• Дыхательный маневр, который строит квазистатическую кривую давления/объема
  • Упрощенная оценка возможности раскрытия объема легких у пациентов с острым респираторным дистресс-синдромом
  • Легкое и безопасное выполнение маневров рекрутмента легких
  • Можно сочетать с измерением пищеводного давления

Инструмент для защиты легких во время вентиляции, используемый при диагностике и рекрутменте

Инструмент для защиты легких во время вентиляции (P/V Tool Pro) обеспечивает дыхательный маневр, который строит квазистатическую кривую давления/объема. Этот метод может использоваться при оценке возможности раскрытия объема легких и определения необходимой стратегии рекрутмента.

P/V Tool Pro также может использоваться для выполнения маневра рекрутмента с применением длительной инфляции и измерения увеличения объема легких. Инструмент особенно полезен при лечении пациентов с острым респираторным дистресс-синдромом, поскольку выбор надлежащей стратегии рекрутмента легких и правильные настройки уровня PEEP имеют решающее значение для данной группы больных.

Использование функции измерения пищеводного давления вместе с инструментом P/V Tool Pro позволяют получить более четкое представление о механике легких и грудной клетки. Это делает возможным применение стратегии вентиляции с защитой легких с помощью регулировки уровня PEEP (Talmor 2008) и оптимизации параметров маневра рекрутмента, рабочего давления и дыхательного объема.

Отзывы клиентов об инструменте P/V Tool Pro

Камилла Невилль,

врач-инструктор отделения искусственной вентиляции легких,

больница в г. Орландо, штат Флорида, США

Мы рекомендуем штатным специалистам по дыхательной терапии использовать P/V Tool сразу после перевода пациента на искусственную вентиляцию легких. Это помогает достичь оптимального PEEP. По отзывам наших специалистов, этот инструмент очень полезен, особенно в тяжелых случаях.

Кен Харгетт,

главный врач отделения искусственной вентиляции легких,

методистская больница Хьюстона, Техас, США

Мы используем инструмент P/V Tool для определения исходных настроек PEEP почти у всех пациентов на искусственной вентиляции. Это делается перед интубацией, сразу после вводного наркоза. Еще мы часто применяем P/V Tool для рекрутмента, особенно у пациентов с рецидивирующим ателектазом.

Научное обоснование


  • P/V Tool является эквивалентом метода CPAP для отслеживания статических кривых P/V дыхательной системы (Piacentini 2009).
  • При проведении вентиляции с защитой легких (включая установку параметров PEEP на основе нижней точки перегиба (LIP) показатели выживаемости выше, чем при использовании традиционных методов (Amato 1998).
  • У пациентов с острым респираторным дистресс-синдромом линейная податливость дыхательной системы (Crs) взаимосвязана с возможностью раскрытия объема легких (Veillard-Baron 2003).
  • Гистерезис кривой P/V может использоваться для оценки возможности раскрытия объема легких во время стационарного лечения (Demory 2008).
  • На ранней стадии развития острого респираторного дистресс-синдрома у большинства пациентов удалось раскрыть объем легких (Borges 2006).
  • При длительной инфляции раскрытие объема легких в большинстве случаев происходит в течение первых 10 секунд (Arnal 2011).

Принцип работы P/V Tool Pro

При выполнении маневра с использованием P/V Tool Pro не нужно отсоединять дыхательный контур или изменять режим и настройки аппарата ИВЛ. Обычную вентиляцию легких можно возобновить в любое время.

Квазистатическая кривая давления/объема (P/V)

P/V Tool Pro регистрирует соотношение давления и объема легких при низкой скорости потока (2 смH2O/с). Давление в дыхательном контуре линейно зависит от заданного оператором целевого значения давления. Когда достигается целевое значение, давление снижается к начальному уровню. Полученные кривые могут быть использованы для анализа:

  • нижней точки перегиба инфляционной кривой давления/объема;
  • линейной податливости инфляционной кривой давления/объема;
  • гистерезиса (разница объема между двумя кривыми).

Маневр рекрутмента с применением длительной инфляции

Давление в дыхательном контуре линейно зависит от заданного оператором целевого значения давления при заданной оператором скорости Ramp. Конечные изменения объема записываются. При достижении целевого значение активируется заданная оператором пауза. После паузы давление спускается в линейном соотношении к заданному оператором показателю «Кон. PEEP». Интегрирование потока во время паузы и определяет объем заполненного легкого.

Загрузки

Список литературы

Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998 Feb 5;338(6):347-54

Arnal JM, Paquet J, Wysocki M, Demory D, Donati S, Granier I, Corno G, Durand-Gasselin J. Optimal duration of a sustained inflation recruitment maneuver in ARDS patients. Intensive Care Med. 2011 Oct;37(10):1588-94.

Borges JB, Okamoto VN, Matos GF, Caramez MP, Arantes PR, Barros F, Souza CE, Victorino JA, Kacmarek RM, Barbas CS, Carvalho CR, Amato MB. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006 Aug 1;174(3):268-78.

Demory D, Arnal JM, Wysocki M, Donati S, Granier I, Corno G, Durand-Gasselin J. Recruitability of the lung estimated by the pressure volume curve hysteresis in ARDS patients. Intensive Care Med. 2008 Nov;34(11):2019-25

Grasso S, Mascia L, Del Turco M, Malacarne P, Giunta F, Brochard L, Slutsky AS, Marco Ranieri V. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology. 2002 Apr;96(4):795-802.

Piacentini E, Wysocki M, Blanch L. Intensive Care Med. A new automated method versus continuous positive airway pressure method for measuring pressure-volume curves in patients with acute lung injury. 2009 Mar;35(3):565-70

Talmor D, Sarge T, Malhotra A, O"Donnell CR, Ritz R, Lisbon A, Novack V, Loring SH. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008 Nov 13;359(20):2095-104

Vieillard-Baron A, Prin S, Chergui K, Page B, Beauchet A, Jardin F. Early patterns of static pressure-volume loops in ARDS and their relations with PEEP-induced recruitment. Intensive Care Med. 2003 Nov;29(11):1929-35

Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006 May;34(5):1311-8

(Continuous positive pressure ventilation - CPPV - Positive end-expiratory pressure - PEEP). При этом режиме давление в дыхательных путях во время конечной фазы выдоха не снижается до 0, а удерживается на заданном уровне (рис. 4.6). ПДКВ достигается при помощи специального блока, встроенного в современные респираторы. Накоплен очень большой клинический материал, свидетельствующий об эффективности данного метода. ПДКВ применяется при лечении ОДН, связанной с тяжелыми легочными заболеваниями (РДСВ, распространенные пневмонии, хронические обструктивные заболевания легких в стадии обострения) и отеком легких. Однако доказано, что ПДКВ не уменьшает и даже может увеличивать количество внесосудистой воды в легких. В то же время режим ПДКВ способствует более физиологическому распределению газовой смеси в легких, снижению венозного шунта, улучшению механических свойств легких и транспорта кислорода. Имеются данные о том, что ПДКВ восстанавливает активность сурфактанта и уменьшает его бронхоальвеолярный клиренс.

Рис. 4.6. Режим ИВЛ с ПДКВ.
Кривая давления в дыхательных путях.

При выборе режима ПДКВ следует иметь в виду, что он может существенно уменьшить СВ. Чем больше конечное давление, тем существеннее влияние этого режима на гемодинамику. Снижение СВ может наступить при ПДКВ 7 см вод.ст. и более, что зависит от компенсаторных возможностей сердечно-сосудистой системы. Повышение давления до 12 см вод.ст. способствует значительному возрастанию нагрузки на правый желудочек и увеличению легочной гипертензии. Отрицательные эффекты ПДКВ могут во многом зависеть от ошибок в его применении. Не следует сразу создавать высокий уровень ПДКВ. Рекомендуемый начальный уровень ПДКВ - 2-6 см вод.ст. Повышение давления в конце выдоха следует проводить постепенно, «шаг за шагом» и при отсутствии должного эффекта от установленной величины. Повышают ПДКВ на 2-3 см вод.ст. не чаще, чем каждые 15-20 мин. Особенно осторожно повышают ПДКВ после 12 см вод.ст. Наиболее безопасный уровень показателя - 6-8 см вод.ст., однако это не означает, что данный режим оптимален в любой ситуации. При большом венозном шунте и выраженной артериальной гипоксемии может потребоваться более высокий уровень ПДКВ с ВФК 0,5 и выше. В каждом конкретном случае величину ПДКВ выбирают индивидуально! Обязательным условием является динамическое исследование газов артериальной крови, рН и параметров центральной гемодинамики: сердечного индекса, давления наполнения правого и левого желудочков и общего периферического сопротивления. При этом следует учитывать также и растяжимость легких.
ПДКВ способствует «раскрытию» нефункционирующих альвеол и ателектатических участков, вследствие чего улучшается вентиляция альвеол, которые вентилировались недостаточно или не вентилировались совсем и в которых происходило шунтирование крови. Положительный эффект ПДКВ обусловлен увеличением функциональной остаточной емкости и растяжимости легких, улучшением вентиляционно-перфузионных отношений в легких и уменьшением альвеолярно-артериальной разности по кислороду.
Правильность уровня ПДКВ может быть определена по следующим основным показателям:
отсутствие отрицательного влияния на кровообращение;
увеличение растяжимости легких;
уменьшение легочного шунта.
Основным показанием к ПДКВ служит артериальная гипоксемия, не устраняемая при других режимах ИВЛ.

Характеристика режимов ИВЛ с регуляцией по объему:
важнейшие параметры вентиляции (ДО и MOB), как и отношение длительности вдоха и выдоха, устанавливает врач;
точный контроль адекватности вентиляции с выбранной FiО2 осуществляется путем анализа газового состава артериальной крови;
установленные объемы вентиляции независимо от физических характеристик легких не гарантируют оптимального распределения газовой смеси и равномерности вентиляции легких;
для улучшения вентиляционно-перфузионных отношений рекомендуется периодическое раздувание легких или проведение ИВЛ в режиме ПДКВ.

Что такое PEEP (positive end expiratory pressure), и для чего оно нужно?

PEEP (ПДКВ - положительное давление конца выдоха) было придумано для борьбы с ЭЗДП (экспираторное закрытие дыхательных путей) по-английски Air trapping (дословно – воздушная ловушка).


У пациентов с ХОБЛ (хроническая обструктивная болезнь легких, или COPD – chronic obstructive pulmonary disease, просвет бронхов уменьшается за счет отека слизистой оболочки. При выдохе мышечное усилие дыхательной мускулатуры через ткань легких передается на внешнюю стенку бронха, ещё больше уменьшая его просвет. Часть бронхиол, не имеющих каркаса из хрящевых полуколец, пережимается полностью. Воздух не выдыхается, а запирается в легких, как ловушке (происходит Air trapping). Последствия – нарушения газообмена и перерастяжение (hyperinflation) альвеол.


Было замечено, что индийские йоги и другие специалисты по дыхательной гимнастике при лечении пациентов с бронхиальной астмой широко практикуют медленный выдох с сопротивлением (например с вокализацией, когда на выдохе пациент поёт «и-и-и-и» или «у-у-у-у», или выдыхает через трубку, опущенную в воду). Таким образом, внутри бронхиол создается давление, поддерживающее их проходимость. В современных аппаратах ИВЛ PEEP создается с помощью регулируемого или даже управляемого клапана выдоха.

В дальнейшем выяснилось, что у PEEP может быть ещё одно применение:


Recruitment (мобилизация спавшихся альвеол).

При ОРДС (острый респираторный дистресc-синдром, ARDS – acute respiratory distress syndrome) часть альвеол находится в «слипшемся» состоянии и не участвует в газообмене. Это слипание происходит из-за нарушения свойств легочного сурфактанта и патологической экссудации в просвет альвеол. Recruitment – это такой маневр управления аппаратом ИВЛ, при котором за счет правильного подбора давления на вдохе, длительности вдоха и повышения PEEP добиваются расправления слипшихся альвеол. После завершения Recruitment manever (маневр мобилизации альвеол) для поддержания альвеол в расправленном состоянии, ИВЛ продолжается с использованием PEEP.

АутоПДКВ (AutoPEEP Intrinsic PEEP) возникает, когда настройки аппарата ИВЛ (частота дыханий, объём и длительность вдоха) не соответствуют возможностям пациента. В этом случае пациент до начала нового вдоха не успевает выдохнуть весь воздух предыдущего вдоха. Соответственно давление в конце выдоха (end expiratory pressure) оказывается значительно более positive, чем хотелось бы. Когда сформировалось преставление об АутоПДКВ (Auto PEEP, Intrinsic PEEP или iPEEP), договорились под понятием PEEP понимать то давление, которое создает в конце выдоха аппарат ИВЛ, а для обозначения суммарного ПДКВ введен термин Total PEEP.

Total PEEP=AutoPEEP+PEEP АутоПДКВ в англоязычной литературе может быть названо:

  • Inadvertent PEEP – непреднамеренное ПДКВ,
  • Intrinsic PEEP – внутреннее ПДКВ,
  • Inherent PEEP – естественное ПДКВ,
  • Endogenous PEEP – эндогенное ПДКВ,
  • Occult PEEP – скрытое ПДКВ,
  • Dynamic PEEP – динамическое ПДКВ.

На современных аппаратах ИВЛ существует специальный тест или программа для определения величины AutoPEEP.

ПДКВ (PEEP) измеряют в сантиметрах водного столба (см H 2 O) и в миллибарах (mbar или мбар). 1 миллибар = 0,9806379 см водного столба.

В настоящее время существует большое количество приспособлений для респираторной терапии и создания PEEP, не являющихся аппаратами ИВЛ (например: дыхательная маска с пружинным клапаном).

PEEP – это опция, которая встраивается в различные режимы ИВЛ.

CPAP constant positive airway pressure (постоянное положительное давление в дыхательных путях). В данной опции constant следует понимать как физический или математический термин: «всегда одинаковый». Умный аппарат ИВЛ PPV при включении этой опции, виртуозно «играя» клапанами вдоха и выдоха, будет поддерживать в дыхательном контуре постоянное одинаковое давление. Логика управления опцией CPAP работает в соответствии с сигналами с датчика давления. Если пациент вдыхает, клапан вдоха приоткрывается насколько необходимо, чтобы поддержать давление на заданном уровне. При выдохе, в соответствии с управляющей командой, приоткрывается клапан выдоха, чтобы выпустить из дыхательного контура избыточный воздух.


На рисунке А представлен идеальный график давления при CPAP.

В реальной клинической ситуации аппарат ИВЛ не успевает мгновенно среагировать на вдох и выдох пациента – рисунок Б.

Обратите внимание на то, что во время вдоха отмечается небольшое снижение давления, а во время выдоха – повышение.

В том случае, если опцией CPAP дополнен какой-либо режим ИВЛ, более правильно называть её Baseline pressure, поскольку во время аппаратного вдоха pressure (давление) уже не constant.
Baseline pressure или просто Baseline на панели управления аппарата ИВЛ обычно, по традиции, обозначается как PEEP/CPAP и является тем заданным уровнем давления в дыхательном контуре, которое аппарат будет поддерживать в интервалах между дыхательными циклами. Понятие Baseline pressure, по современным представлениям, наиболее адекватно определяет данную опцию аппарата ИВЛ, но важно знать, что принцип управления для PEEP, CPAP и Baseline одинаков. На графике давления – это один и тот же сегмент на оси «Y», и, по сути дела, мы можем рассматривать PEEP, CPAP и Baseline как синонимы. В том случае, если PEEP=0, это ZEEP (zero end expiratory pressure), и Baseline соответствует атмосферному давлению.


Что такое PEEP (positive end expiratory pressure), и для чего оно нужно?

PEEP (ПДКВ - положительное давление конца выдоха) было придумано для борьбы с ЭЗДП (экспираторное закрытие дыхательных путей) по-английски Air trapping (дословно - воздушная ловушка).

У пациентов с ХОБЛ (хроническая обструктивная бо­лезнь легких, или COPD - chronic obstructive pulmonary disease, просвет бронхов уменьшается за счет отека слизистой оболочки.

При выдохе мышечное усилие дыха­тельной мускулатуры через ткань лег­ких передается на внешнюю стенку бронха, ещё больше уменьшая его просвет. Часть бронхиол, не имею­щих каркаса из хрящевых полуколец, пережимается полностью. Воздух не выдыхается, а запирается в лег­ких, как ловушке (происходит Air trapping). Последствия - наруше­ния газообмена и перерастяжение (hyperinflation) альвеол.

Было замечено, что индийские йоги и другие специалисты по

дыхательной гимнастике при лече­нии пациентов с бронхиальной астмой широко практикуют мед­ленный выдох с сопротивлением (например с вокализацией, когда на выдохе пациент поёт «и-и-и-и» или «у-у-у-у», или выдыхает через трубку, опущенную в воду). Таким образом, внутри бронхиол созда­ется давление, поддерживающее

их проходимость. В современных аппаратах ИВЛ PEEP создается с помощью регулируемого или даже управляемого клапана выдоха.

В дальнейшем выяснилось, что у PEEP может быть ещё одно применение:

Recruitment (мобилизация спав­шихся альвеол).

При ОРДС (острый респира­торный дистресс-синдром, ARDS - acute respiratory distress syn­drome) часть альвеол находится в «слипшемся» состоянии и не уча­ствует в газообмене. Это слипание происходит из-за нарушения свойств легочного сурфактанта и патологической экссудации в про­свет альвеол. Recruitment - это такой маневр управления аппаратом ИВЛ, при котором за счет правильного подбора давления на вдохе, длительности вдоха и повышения PEEP добиваются расправления слипшихся альвеол. После завершения Recruitment manever (ма­невр мобилизации альвеол) для поддержания альвеол в расправлен­ном состоянии, ИВЛ продолжается с использованием PEEP.

АутоПДКВ (AutoPEEP Intrinsic PEEP) возникает, когда на­стройки аппарата ИВЛ (частота дыханий, объём и длительность вдоха) не соответствуют возможностям пациента. В этом случае па­циент до начала нового вдоха не успевает выдохнуть весь воздух пре­дыдущего вдоха. Соответственно давление в конце выдоха (end expiratory pressure) оказывается значительно более positive, чем хо­телось бы. Когда сформировалось преставление об АутоПДКВ (Auto PEEP, Intrinsic PEEP или iPEEP), договорились под понятием PEEP понимать то давление, которое создает в конце выдоха аппарат ИВЛ, а для обозначения суммарного ПДКВ введен термин Total PEEP.

Total PEEP=AutoPEEP+PEEP

АутоПДКВ в англоязычной литературе может быть названо: Inadvertent PEEP - непреднамеренное ПДКВ,

Intrinsic PEEP - внутреннее ПДКВ,

Inherent PEEP - естественное ПДКВ,

Endogenous PEEP - эндогенное ПДКВ,

Occult PEEP - скрытое ПДКВ,

Dynamic PEEP - динамическое ПДКВ.

На современных аппаратах ИВЛ существует специальный тест или программа для определения величины AutoPEEP. ПДКВ (PEEP) измеряют в сантиметрах водного столба (см Н2О) и в мил­либарах (mbar или мбар). 1 миллибар = 0,9806379 см водного столба.

В настоящее время существует большое количество приспо­соблений для респираторной терапии и создания PEEP, не являю­щихся аппаратами ИВЛ (например: дыхательная маска с пружинным клапаном).

PEEP - это опция, которая встраивается в различные режимы ИВЛ. CPAP constant positive airway pressure (постоянное положительное давление в дыхательных путях). В данной опции constant следует понимать как физический или математический термин: «всегда оди­наковый». Умный аппарат ИВЛ PPV при включении этой опции, вир­туозно «играя» клапанами вдоха и выдоха, будет поддерживать в дыхательном контуре постоянное одинаковое давление. Логика управления опцией CPAP работает в соответствии с сигналами с дат­чика давления. Если пациент вдыхает, клапан вдоха приоткрывается насколько необходимо, чтобы поддержать давление на заданном уровне. При выдохе, в соответствии с управляющей командой, при­открывается клапан выдоха, чтобы выпустить из дыхательного кон­тура избыточный воздух.


На рисунке А представлен идеальный график давления при CPAP. В реальной клинической ситуации аппарат ИВЛ не успевает мгно­венно среагировать на вдох и выдох пациента - рисунок Б.

Обратите внимание на то, что во время вдоха отмечается небольшое снижение давления, а во время выдоха - повышение.

В том случае, если опцией CPAP дополнен какой-либо режим ИВЛ, более правильно называть её Baseline pressure, поскольку во время аппаратного вдоха pressure(давление) уже не constant.

Baseline pressure или просто Baseline на панели управления аппа­рата ИВЛ обычно, по традиции, обозначается как PEEP/CPAP и является тем заданным уровнем давления в дыхательном контуре, которое аппарат будет поддерживать в интервалах между дыхатель­ными циклами. Понятие Baseline pressure, по современным пред­ставлениям, наиболее адекватно определяет данную опцию аппарата ИВЛ, но важно знать, что принцип управления для PEEP, CPAP и Baseline одинаков. На графике давления - это один и тот же сегмент на оси «Х», и, по сути дела, мы можем рассматривать PEEP, CPAP и Baseline как синонимы. В том случае, если PEEP=0, это ZEEP (zero end expiratory pressure), и Baseline соответствует атмосфер­ному давлению.

По существу, различия между всеми этими режимами объясняются только разным программным обеспечением , а идеальная программа пока не создана. Вероятно, прогресс VTV будет связан с усовершенствованием программ и математического анализа информации, а не конструкций вентиляторов , которые и без того вполне совершенны.

Динамика изменения давления и потока газа в дыхательных путях пациента в течение дыхательного цикла при проведении принудительной TCPL вентиляции иллюстрируется рис.4, на котором схематично изображены параллельные графики давления и потока во времени. Реальные кривые давления и потока могут отличаться от изображенных. Причины и характер изменения конфигурации рассматриваются ниже.

ПАРАМЕТРЫ TCPL ВЕНТИЛЯЦИИ.

Основными параметрами при TCPL вентиляции являются те, что устанавливаются врачом на аппарате: поток, пиковое давление вдоха, время вдоха, время выдоха (или время вдоха и частота дыхательных циклов), положительное

Аббревиатура" href="/text/category/abbreviatura/" rel="bookmark">аббревиатурами и названиями (так, как они обозначены на панелях управления аппаратов ИВЛ).

Кроме основных параметров, большое значение имеют параметры производные, то есть те, что возникают от сочетания основных параметров и от состояния легочной механики пациента. К производным параметрам относятся: среднее давление в дыхательных путях (одна из основных детерминант оксигенации) и дыхательный объем – один из основных параметров вентиляции.

Flow – поток

Под этим параметром подразумевается постоянный инспираторный поток в дыхательном контуре пациента (не путать с потоком вдыхательных путях). Величина потока должна быть достаточной для достижения установленного значения пикового давления вдоха за установленное время вдоха, когда клапан APL закрыт. Величина потока зависит от массы тела пациента, от емкости применяемого дыхательного контура и от величины пикового давления. Для вентиляции среднего доношенного новорожденного с физиологическими параметрами и при использовании стандартного неонатального дыхательного контура достаточным является поток в 6литров/мин. Для недоношенных детей может быть достаточным поток в 3 – 5литров/мин. При использовании аппаратов “Stephan” разных моделей, которые имеют дыхательный контур меньшей емкости, чем стандартный одноразовый, могут использоваться меньшие значения потока. При необходимости применять высокие пиковые давления с большой частотой дыхательных циклов приходится увеличивать поток до 8 – 10л/мин., так как давление должно успеть подняться за короткое время вдоха. При вентиляции детей с массой – 12кг. (с большей емкостью дыхательного контура) могут потребоваться потоки в 25л/мин и выше.

От величины потока зависит форма кривой давления в дыхательных путях. Увеличение потока вызывает более быстрый подъем давления в ДП. Слишком большой поток мгновенно повышает давление в ДП (аэродинамический удар) и может вызвать беспокойство ребенка и спровоцировать «борьбу» с вентилятором. Зависимость формы кривой давления от величины потока иллюстрируется рис.5. Но форма кривой давления зависит не только от величины потока, но и от податливости (С) респираторной системы пациента. При низком С выравнивание давлений в контуре пациента и альвеолах будет происходить быстрее, а форма кривой давления приблизится к квадратной.

Выбор величины потока зависит и от размера интубационной трубки, в которой может возникнуть турбулентность, снижающая эффективность спонтанных вдохов и увеличивающая работу дыхания. В ИТ Ø 2,5мм турбулентность появляется при потоке 5л/мин, в ИТ Ø 3мм при потоке 10л/мин.

От величины потока в контуре пациента зависит и форма кривой потока в ДП. При низком потоке играет роль сжатие газа в дыхательном контуре (прежде всего в камере увлажнителя), поэтому инспираторный поток вначале нарастает, а затем по мере заполнения легких падает. При высоком потоке сжатие газа происходит быстро, поэтому инспираторный поток сразу поступает с максимальным значением. (рис.6)

При состояниях с высоким Raw и региональной неравномерностью вентиляции предпочтительно выбирать такие величины потока и времени вдоха, чтобы обеспечить форму кривой давления близкую к треугольной. Это приведет к улучшению распределения дыхательного объема, то есть позволит избежать развития волюмтравмы в участках с нормальными значениями Raw.


Если при спонтанных вдохах пациента давление в контуре снижается > 1cм Н2О, то поток недостаточен и его следует увеличить.

В аппаратах с неразделенным потоком (инспираторным и экспираторным) высокая скорость потока в дыхательном контуре с малым внутренним диаметром может создать сопротивление выдоху, что увеличивает значение РЕЕР (выше установленного) и может повысить работу дыхания пациента, провоцируя активный выдох.

https://pandia.ru/text/78/057/images/image005_109.jpg" width="614" height="204 src=">

Рис 6. Динамика потока в ДП при различных скоростях потока в дыхательном контуре

А) Инспираторный поток нарастает, но не успевает заполнить легкие за время

С) Инспираторный поток заполняет легкие, снижается и прекращается раньше

наступления времени выдоха.

Пиковое давление вдоха – PIP ( peak inspiratory pressure).

PIP является основным параметром, который определяет величину дыхательного объема (Vt), хотя последний зависит и от уровня РЕЕР. То есть Vt зависит от ΔР=PIP-PEEP (drive pressure), но уровень РЕЕР колеблется в значительно меньшем диапазоне. Но Vt будет зависеть и от легочной механики. При увеличении Raw (САМ, БЛД, бронхиолит, закупорка интубационной трубки) и коротком времени вдоха Vt будет снижаться. При снижении С (RDS, отек легких) Vt также снизится. Увеличение С (введение сурфактанта, дегидратация) повысит Vt. У пациентов с высокой податливостью респираторной системы (недоношенные со здоровыми легкими, ИВЛ которым проводится по поводу апноэ или оперативного лечения) величина PIP для обеспечения адекватной вентиляции может быть 10 – 12см Н2О. Для доношенных новорожденных с нормальными легкими PIP = 13 – 15см Н2О обычно бывает достаточным. В то же время у пациентов с «жесткими» легкими может потребоваться PIP > 25см Н2О для достижения минимального Vt то есть 5мл/кг массы тела.

Большинство осложнений ИВЛ связаны с неправильным подбором величины PIP. Высокие значения PIP (25 – 30см Н2О) ассоциируются с баро/волюмтравмой, снижением сердечного выброса, повышением внутричерепного давления, гипервентиляцией и ее последствиями. Недостаточная величина PIP (индивидуальная для каждого пациента) ассоциируется с ателектравмой и гиповентиляцией.

Подбор адекватной величины PIP проще всего проводить, ориентируясь на достижение «нормальных» экскурсий грудной клетки. Однако, такой подбор является субъективным и должен подкрепляться аускультативными данными и (по возможности) мониторингом дыхания, то есть измерением Vt, определением форм кривых и петель, а также данными газового анализа крови.

Для поддержания адекватной вентиляции и оксигенации следует выбирать минимально возможные значения PIP, так как это снижает тканевой стресс и риск развития VILI (ventilator-induced lung injury).

Положительное давление в конце выдоха – PEEP

( positive end- expiratory pressure).

Каждый интубированый пациент должен быть обеспечен уровнем РЕЕР не менее 3см Н2О, что моделирует эффект смыкания голосовой щели во время выдоха в норме. Этот эффект препятствует развитию ЭЗДП и поддерживает ФОЕ. FRC = PEEP × C при проведении ИВЛ. Вентиляция с нулевым уровнем РЕЕР – ZEEP (zero end-expiratory pressure) является режимом, повреждающим легкие.

РЕЕР препятствует спадению альвеол и способствует открытию нефункционирующих бронхиол и альвеол у недоношенных детей. РЕЕР способствует перемещению жидкости их альвеолярного в интерстициальное пространство (baby lung effect), сохраняя, таким образом, активность сурфактанта (в том числе и экзогенного). При сниженной растяжимости легких повышение уровня РЕЕР облегчает раскрытие альвеол (recruitment) и снижает работу дыхания при спонтанных вдохах, а растяжимость легочной ткани увеличивается, но не всегда. Пример улучшения растяжимости легких при увеличении РЕЕР до уровня СРР (collapse pressure point) иллюстрируется рис. 7.

Рис 7. Увеличение растяжимости респираторной системы при повышении РЕЕР

до уровня СРР.

Если снижение растяжимости респираторной системы связано с торакоабдоминальными факторами (пневмоторакс, высокое стояние диафрагмы и др.), то увеличение РЕЕР только ухудшит гемодинамику, но не улучшит газообмен.

При спонтанном дыхании РЕЕР уменьшает западение уступчивых мест грудной клетки, особенно у недоношенных детей.

При TCPL вентиляции увеличение РЕЕР всегда снижает ΔР определяющую Vt. Снижение дыхательного объема может привести к развитию гиперкапнии, что потребует увеличения PIP или частоты дыхания.

РЕЕР является параметром вентиляции в наибольшей степени влияющим на МАР (mean airway pressure) и, соответственно, на диффузию кислорода и оксигенацию.

Подбор адекватного значения РЕЕР для каждого конкретного пациента является непростой задачей. Следует учитывать характер поражения легких (данные рентгенографии, конфигурацию петли P/V, наличие экстрапульмонального шунтирования), изменение оксигенации в ответ на изменение РЕЕР. При вентиляции больных с неповрежденными легкими следует применять РЕЕР = 3см Н2О, что соответствует физиологической норме. В острую фазу легочных заболеваний уровень РЕЕР не должен быть < 5см Н2О, исключением является персистирующая легочная гипертензия, при которой рекомендуется ограничивать РЕЕР до 2см Н2О. Считается, что величины РЕЕР < 6см Н2О не оказывают отрицательного воздействия на легочную механику, гемодинамику и мозговой кровоток. Однако, Keszler M. 2009; считает, что при очень низкой растяжимости легких вполне уместны уровни РЕЕР в 8см Н2О и выше, которые способны восстановить V/Q и оксигенацию. При баротравме, особенно интерстициальной эмфиземе, возможно снижение уровня РЕЕР до нуля, если нет возможности перевести пациента с CMV на HFO. Но при любых обстоятельствах оптимальными значениями РЕЕР являются наименьшие, при которых достигается наилучший газообмен с применением относительно безопасных концентраций кислорода.

Высокие значения РЕЕР оказывают неблагоприятное воздействие на гемодинамику и мозговой кровоток. Снижение венозного возврата уменьшает сердечный выброс, увеличивают гидростатическое давление в легочных капиллярах (гемодинамическая альтерация), что может потребовать применения инотропной поддержки. Ухудшается лимфатический дренаж не только легких, но и спланхнической зоны. Повышается легочное сосудистое сопротивление и может произойти перераспределение кровотока в мало вентилируемые зоны, то есть шунтирование. Повышается работа дыхания при спонтанной дыхательной активности. Наблюдается задержка жидкости в организме. Открытие всех ДП и перерастяжение их увеличивает мертвое пространство (Vd). Но особенно вредны высокие уровни РЕЕР при негомогенных поражениях легких. Они приводят к перерастяжению легко рекрутируемых здоровых альвеол еще до окончания вдоха и высокому конечному инспираторному объему, то есть к волюмтравме и/или баротравме.

Установленный врачом уровень РЕЕР в действительности может быть выше за счет возникновения auto-PEEP. Это явление связано либо с высоким Raw, либо с недостаточным временем выдоха, а чаще с сочетанием этих факторов. Вредные эффекты auto-PEEP те же, что при высоких значениях РЕЕР, но непредусмотренное врачом снижение ΔР может привести к серьезной гиповентиляции. При наличии auto-PEEP выше риск развития баротравмы, выше порог чувствительности сенсоров потока и давления в триггерных системах. Наличие auto-РЕЕР можно определить только с помощью дыхательного монитора, как в абсолютных величинах, так и по графику потока. Снижения auto-PEEP можно добиться: применением бронхолитиков, снижением Vt, увеличением времени выдоха. У новорожденных с нормальным Raw возникновение auto-PEEP маловероятно, если время выдоха > 0,5 сек. Более вероятно развитие этого феномена при частоте дыхания > 60 в минуту. При ВЧ ИВЛ он имеет место всегда, кроме HFO.

Частота дыхания – R ( respiratory rate).

Это обозначение наиболее часто встречается в TCPL вентиляторах. В аппаратуре германского производства в основном устанавливаются время вдоха и выдоха, а частота дыхания является производной. В вентиляторах для взрослых пациентов и в наркозно-дыхательной аппаратуре частота дыхательных циклов чаще обозначается как f (frequency).

Этот параметр в значительной мере определяет минутный объем дыхания и минутный объем альвеолярной вентиляции. MV = Vt × R. MValv = R(Vt – Vd).

Можно условно выделить три диапазона частот дыхания, используемых у новорожденных: до 40 в минуту, 40 – 60 в минуту, что соответствует физиологической норме и >60 в минуту. У каждого диапазона есть свои преимущества и недостатки, но нет единого мнения об оптимальной частоте дыхания. Во многом вопрос о выборе частоты определяется приверженностью клинициста к тем или иным диапазонам. Но, в конечном итоге, любая из выбранных частот должна обеспечивать необходимый уровень минутной альвеолярной вентиляции. Нужно учитывать тип нарушений легочной механики, фазу заболевания, собственную частоту дыхания пациента, наличие баротравмы и данные КОС.

Частоты < 40/мин могут использоваться при вентиляции пациентов с неповрежденными легкими (по хирургическим или неврологическим показаниям), при уходе от ИВЛ, что стимулирует дыхательную активность пациента. Низкие частоты более эффективны при высоком Raw, так как позволяют увеличивать время вдоха и выдоха. В острую фазу легочных заболеваний некоторые авторы используют низкую частоту дыхания с инвертированным соотношением I:Е (для повышения МАР и оксигенации), что часто требует парализации больного и увеличивает вероятность баротравмы и снижения сердечного выброса из-за повышенного МАР.

Частоты/мин эффективны при лечении большинства легочных заболеваний, однако, не всегда могут обеспечить адекватную альвеолярную вентиляцию.

Частоты > 60/мин необходимы при использовании минимальных дыхательных объемов (4 – 6мл/кг массы тела), так как при этом возрастает роль мертвого пространства (Vd), которое вдобавок может увеличиваться за счет емкости сенсора потока. Этот подход может успешно применяться при «жестких» легких, так как снижает работу дыхания для преодоления эластического сопротивления, снижает тканевой стресс, уменьшает легочное сосудистое сопротивление и снижает вероятность баро/волюмтравмы легких. Однако, при укороченном времени выдоха велика вероятность возникновения auto PEEP c соответствующими неблагоприятными эффектами. Врач может не догадываться об этом, если не использует дыхательный монитор. Использование низких Vt наряду с auto PEEP может привести к развитию гиповентиляции и гиперкапнии.

Использование частот 100 – 150/мин (HFPPV- high frequency positive pressure ventilation) в настоящем материале не рассматривается.

Время вдоха – Ti ( time inspiratory), время выдоха – Te ( time expiratory) и

соотношение Ti / Te ( I: E ratio).


Общим правилом при определении минимальных значений Ti и Te является достаточность для поступления необходимого дыхательного объема и эффективного опорожнения легких (без появления auto PEEP). Эти параметры зависят от растяжимости (С) и аэродинамического сопротивления (Raw), то есть от ТС (C × Raw).

У новорожденных с неповрежденными легкими для вдоха обычно используются значения 0,35 – 0,45 сек. При снижении растяжимости легких (RDS, отек легких, диффузная пневмония – состояния с низкими значениями ТС) допустимо использовать короткое время вдоха и выдоха 0,25- 0,3 сек. При состояниях с высоким Raw (бронхообструкция, БЛД, САМ) Ti следует удлинять до 0,5, а при БЛД и до 0,6 сек. При удлинении Ti свыше 0,6 сек. может спровоцировать активный выдох против аппаратного вдоха. При Ti > 0,8 сек. многие авторы отмечают отчетливое увеличение частоты развития баротравмы.

У годовалых детей частота дыхания ниже, а Ti увеличивается до 0,6 – 0,8 сек.

Соотношение I:E. В норме вдох при спонтанном дыхании всегда короче выдоха, ввиду сопротивления экспираторному потоку голосовой щели и уменьшения сечения бронхов, что увеличивает Raw на выдохе. При поведении ИВЛ эти закономерности сохраняются, поэтому в большинстве случаев Ti < Te.

Фиксированные значения I:E применяются в основном в наркозно–дыхательной аппаратуре и в некоторых устаревших моделях TCPL вентиляторов. Это является неудобством, так как при низкой частоте дыхания время вдоха может значительно удлиняется (например, в режиме IMV). В современных вентиляторах I:E вычисляется автоматически и выводится на панель управления. Собственно соотношение I:E не так важно, как абсолютные значения Ti и Te.

Вентиляция с инвертированным соотношением I:E (Ti > Te) обычно применяется в крайних случаях, когда иным путем не удается добиться улучшения оксигенации. Основным фактором повышения оксигенации в этом случае является повышение МАР без повышения PIP.

При уходе от ИВЛ снижается частота дыхания за счет увеличения Te, при этом I:E изменяется от 1:3 до 1:10. При мекониальной аспирации некоторые авторы рекомендуют соотношения 1:3 – 1:5 для профилактики «воздушных ловушек».

Неоценимую помощь в подборе адекватных значений Ti и Te оказывает дыхательный монитор (особенно если определяет Тс). Оптимизировать значения Ti и Te можно, анализируя график потока в ДП на дисплее монитора. (Рис. 8)

Концентрация кислорода – FiO 2

От FiO2 зависит парциальное давление кислорода в дыхательной смеси, а следовательно и градиент Palv O2 – Pv O2, определяющий диффузию кислорода через альвеолокапиллярную мембрану. Поэтому FiO2 является основной детерминантой оксигенации. Но высокие концентрации кислорода токсичны для организма. Гипероксия вызывает оксидативный стресс (свободнорадикальное окисление), поражающий весь организм. Местное действие кислорода повреждает легкие (см. раздел VILI). Отдаленные последствия токсического воздействия кислорода на организм могут быть весьма печальными (слепота, ХЗЛ, неврологический дефицит и др.).

Многолетние рекомендации всегда начинать ИВЛ новорожденным с FiO2 1,0 для быстрого восстановления оксигенации к настоящему моменту считаются устаревшими. Хотя Приказ № 000 от г «О совершенствовании первичной реанимационной помощи новорожденным в родильном зале» пока остается действующим, готовится новый, учитывающий результаты исследований, выполненных уже в XXI веке. Этими исследованиями установлено, что вентиляция чистым кислородом увеличивает неонатальную смертность, оксидативный стресс сохраняется до 4 недель, усиливается повреждение почек и миокарда, увеличивается время неврологического восстановления после асфиксии . Во многих ведущих неонатальных центрах в развитых странах уже приняты иные протоколы реанимации новорожденных. Нет доказательств, что повышение FiO2 может улучшить ситуацию, если у новорожденного, несмотря на адекватную вентиляцию, сохраняется брадикардия. При необходимости проведения ИВЛ, ее начинают комнатным воздухом. Если через 30 сек вентиляции сохраняется брадикардия и/или SpO2 < 85%, то ступенчато увеличивают FiO2 с шагом 10% до достижения SpO2 < 90%. Имеются доказательства эффективности подобного подхода (доказательная медицина).

В острую фазу легочных заболеваний относительно безопасно проводить ИВЛ с FiO2 0,6 не более 2 суток. При длительной ИВЛ относительно безопасно использовать FiO2 < 0,4. Можно добиться увеличения оксигенации и иными мерами (работа с МАР, дегидратация, увеличение сердечного выброса, применение бронхолитиков и др.).

Относительно безопасны кратковременные увеличения FiO2 (к примеру, после аспирации мокроты). Мероприятия по профилактике токсичности кислорода изложены в разделе VILI.

IF - inspiratory flow EF - expiratory flow

Рис 8. Оптимизация Ti и Te с помощью анализа кривых потока в ДП.

А) Ti оптимально (поток успевает снизиться до 0). Есть резерв для увеличения

частоты дыхания за счет экспираторной паузы.

В) Ti недостаточно (поток не успевает снизиться). Увеличить Ti и/или PIP.

Допустимо при использовании минимальных Vt.

C) Ti недостаточно (поток низкий и не успевает заполнить легкие). Увеличить

поток в дыхательном контуре и/или Ti.

D) Te недостаточно (экспираторный поток не успевает достигнуть изолинии, то

есть прекратиться) Auto – PEEP. Увеличить Те за счет снижения частоты (R).

E) Ti и Te недостаточны, ни вдох ни выдох не успевают завершится. Вероятна

выраженная бронхообструкция. Auto – PEEP. Увеличить Ti и особенно Те и,

возможно, PIP.

F) Возможно уменьшение Ti1 до Ti2 без снижения Vt, так как между Ti1 и Ti2

потока в ДП нет, если не преследуется цель увеличения МАР за счет PIP плато.

Есть резерв увеличения частоты дыхания за счет инспираторной паузы.

Среднее давление в дыхательных путях – MAP( mean airway pressure).

Газообмен в легких происходит как во время вдоха, так и во время выдоха, поэтому именно МАР определяет разницу между атмосферным и альвеолярным давлениями (дополнительное давление, увеличивающее диффузию кислорода через альвеолокапиллярную мембрану). Это справедливо, если МАР = Palv. Однако, не всегда МАР отражает среднее альвеолярное давление, которое определяет диффузию кислорода и гемодинамические эффекты ИВЛ. При высокой частоте дыхания не все альвеолы успевают достаточно вентилироваться при коротком времени вдоха (особенно в зонах с повышенным Raw), поэтому Palv < MAP. При высоком Raw и коротком времени выдоха Palv > MAP из-за auto-PEEP. При высоком минутном объеме дыхания Palv > MAP. Но в обычных условиях МАР отражает среднее альвеолярное давление и поэтому является второй важной детерминантой оксигенации.

МАР является производным параметром TCPL вентиляции, так как зависит от величин основных параметров: PIP, PEEP, Ti, Te, (I:E) и потока в дыхательном контуре.

МАР можно вычислить по формуле: МАР = КΔР(Ti/Te + Te) +PEEP, где К – скорость повышения давления в ДП. Поскольку К зависит от скорости потока в контуре пациента и механических свойств легких, а реальную величину этого коэффициента мы не можем вычислить, то проще понять что такое МАР можно, используя графическую интерпретацию (в виде площади фигуры, которую образует кривая давления в ДП во время дыхательного цикла. Рис.9 а, в. Влияние потока, PIP, PEEP, Ti и I:E представлено на рис.9c, d.

Рис 9. Графическая интерпретация МАР и влияние параметров ИВЛ.

Современные вентиляторы определяют МАР автоматически, и эта информация всегда присутствует на панели управления. Манипулируя разными параметрами вентиляции, мы можем изменять МАР, не изменяя вентиляции или наоборот и т. п.

Роль различных параметров вентиляции в изменении величины МАР (и оксигенации) неодинакова: РЕЕР > PIP > I:E > Flow. Представленная иерархия справедлива при вентиляции поврежденных легких. При вентиляции здоровых легких влияние параметров ИВЛ на уровень МАР и оксигенацию может быть иным:PIP > Ti > PEEP. При баротравме повышение уровня МАР снизит оксигенацию. Увеличение частоты дыхания увеличивает МАР, так как (при неизменных прочих параметрах вентиляции) укорачивается время выдоха, а следовательно, изменяется и I:E.

Повышение уровня МАР > 14см Н2О может снизить оксигенацию из-за снижения сердечного выброса и нарушения доставки кислорода тканям. Вредные эффекты высоких уровней МАР описаны выше в разделе РЕЕР (так как именно РЕЕР в наибольшей степени влияет на уровень МАР).

Дыхательный объем – Vt ( volume tidal).

Дыхательный объем является одной из основных детерминант вентиляции (МОД, МОАВ). При ТCPL вентиляции Vt является производным параметром, так как зависит не только от установок на вентиляторе, но и от состояния легочной механики пациента, то есть от С, Raw и Тс. Vt можно только измерить с помощью дыхательного монитора.

Если не принимать во внимание влияние Raw, то Vt определяется разницей между PIP и Palv в конце выдоха и растяжимостью легких: Vt = C(PIP – Palv). Поскольку, в отсутствие auto – PEEP в конце выдоха Рalv = PEEP, то Vt = CΔP. Поэтому, при одинаковых установках на вентиляторе у одного и того же пациента Vt может быть разным. Например: У недоношенного с RDS Cdyn = 0,5мл/cм H2O, PIP – 25см H2O и РЕЕР – 5см Н2О, Vt = 0,5(25 – 5) = 10мл. После введения сурфактанта, через 12 часов Cdyn = 1,1мл/см Н2О, параметры вентиляции прежние, Vt = 1,1×20 = 22 мл. Однако, эти расчеты весьма приблизительны, так как на Vt влияют и форма кривой давления, и время вдоха/выдоха, и возможная турбулентность в ДП. Сохранение ΔР = const. при разных уровнях РЕЕР скорее всего изменит Vt, но как и насколько – трудно предсказать, ввиду нелинейного характера изменения растяжимости. Поэтому, Vt следует измерять после изменения любого из параметров вентиляции.

В настоящее время общей рекомендацией является поддержание Vt в пределах физиологических значений 5 – 8мл/кг массы тела, как у новорожденных так и у взрослых (6 – 8мл/кг вычисленной идеальной массы тела). При вентиляции здоровых легких допустимы значения 10 – 12мл/кг. «Протективная вентиляция» (lung protective ventilation) предполагает использование минимальных дыхательных объемов 5 – 6мл/кг. Это снижает тканевой стресс пораженных малорастяжимых легких.

Однако, вентиляция легких малыми объемами снижает альвеолярную вентиляцию, так как значительная часть Vt вентилирует мертвое пространство. Это обстоятельство вынуждает увеличивать альвеолярную вентиляцию за счет повышения частоты дыхания. Но при частотах > 70/мин минутный объем вентиляции начинает снижаться из-за укорочения Ti, когда Paw не успевает достигнуть уровня PIP, что снижает ΔР и Vt. А укорочение Te вызывает появление auto – PEEP, что тоже снижает ΔР и Vt. Попытки увеличения ΔР за счет снижения РЕЕР не всегда эффективны, так как низкие значения РЕЕР способствуют коллапсу части альвеол и бронхиол, что снижает площадь дыхательной поверхности.

При высоком Raw можно увеличить Vt увеличением Ti, если инспираторный поток не успевает снизиться. Однако, после выравнивания давлений (PIP = Palv) увеличение Ti не приведет к увеличению Vt. Это хорошо отслеживается при анализе кривой потока в ДП.

У детей с экстремально низкой массой тела датчик потока весьма существенно увеличивает мертвое пространство. В этой группе пациентов Vt не должен быть < 6 – 6,5мл/кг. При гиперкапнии можно увеличить альвеолярную вентиляцию уменьшением мертвого пространства, сняв переходники, датчик потока и укоротив интубационную трубку. При проведении протективной вентиляции гиперкапния в той или иной степени имеет место всегда, но ее необходимо поддерживать в допустимых пределах (permissive hypercapnia).

Только регулярные исследования газового состава крови помогают полностью контролировать адекватность альвеолярной вентиляции уровню метаболизма пациента (продукции углекислоты). В отсутствие лабораторного контроля об адекватности вентиляции можно судить по хорошей синхронизации пациента с вентилятором (если не применяется обезболивание наркотическими аналгетиками или антиконвульсанты, такие как барбитураты и бензодиазепины). Клинические же проявления гипокапнии и гиперкапнии у новорожденных практически отсутствуют, в отличие от взрослых.

Мониторинг дыхания позволяет отследить динамику изменения объема в течение дыхательного цикла (график время/объем). В частности, можно определить утечку Vt между ИТ и гортанью (Рис 10.).

Рис 10. Графики время/объем. А) Нормальный. В) Утечка объема.

Цифровая информация позволяет определить объем утечки . Допустима утечка около 10% объема. Если утечки нет, то объем выдоха может превышать объем вдоха. Это связано со сжатием газа при высоких значениях PIP и с расширением газа при согревании, если температура в дыхательном контуре невысока.

РЕГУЛЯЦИЯ ДЫХАНИЯ ПРИ ИВЛ И ВЗАИМОДЕЙСТВИЕ

ПАЦИЕНТА С ВЕНТИЛЯТОРОМ.

Большинство новорожденных не перестают дышать самостоятельно во время проведения ИВЛ, так как работа их дыхательных центров (в продолговатом мозге – РаСО2, оливах мозжечка – РН ликвора, в каротидных синусах – РаО2) не прекращается. Однако, характер ответной реакции на изменения газового состава крови и РН сильно зависит от срока гестации и постнатального возраста. Чувствительность хеморецепторов дыхательных центров снижена у недоношенных детей, а гипоксемия, ацидоз, гипотермия и особенно гипогликемия снижают ее дополнительно. Поэтому при гипоксии любого генеза у недоношенных быстро развивается депрессия дыхания. Эта центральная гипоксическая депрессия обычно проходит к третьей неделе постнатального периода. Доношенные новорожденные реагируют на гипоксию одышкой, но впоследствии может наступить депрессия дыхания, связанная с усталостью дыхательной мускулатуры. Снижение МОД в ответ на повышение FiO2 у доношенных детей развивается на вторые сутки жизни, а у недоношенных на второй неделе. Барбитураты, наркотические аналгетики и бензодиазепины вызывают депрессию дыхания тем больше, чем ниже срок гестации и постнатальный возраст.

Существует обратная связь дыхательного центра с изменениями легочных объемов, которую обеспечивают рефлексы Геринга – Бройера, регулирующие соотношение частоты и глубины дыхания. Выраженность этих рефлексов максимальна у доношенных детей, но с возрастом снижается.

1). Инспираторно – тормозящий рефлекс:

Раздувание легких на вдохе преждевременно его прекращает.

2). Экспираторно – облегчающий рефлекс:

Раздувание легких на выдохе задерживает наступление следующего вдоха.

3). Рефлекс на спадение легких:

Уменьшение объема легких стимулирует инспираторную активность и

укорачивает выдох.

Кроме рефлексов Геринга – Бройера существует так называемый парадоксальный рефлекс вдоха Геда, который заключается в углублении собственного вдоха под влиянием механического, но он наблюдается не у всех детей.

В интерстиции альвеолярных стенок содержатся т. н.”J” рецепторы, которые стимулируются перерастяжением альвеол (например, при Ti > 0,8 сек), вызывая активный выдох, что может вызвать баротравму. “J” рецепторы могут стимулироваться интерстициальным отеком и застойными явлениями в легочных капиллярах, что ведет к развитию тахипноэ (в частности TTN).

Таким образом, можно наблюдать 5 разновидностей взаимодействия пациента с вентилятором:

1). Апноэ чаще всего связано с гипокапнией (гипервентиляция), тяжелым

поражением ЦНС или медикаментозной депрессией.

2).Торможение спонтанного дыхания под влиянием рефлексов Геринга –Бройера.

3). Стимуляция спонтанного дыхания.

4). Выдох пациента против механического вдоха – «борьба» с вентилятором.

5). Синхронизация спонтанного дыхания с ИВЛ.

Наличие спонтанного дыхания при проведении ИВЛ является полезным фактором, так как:

1). Улучшает V/Q.

2). Тренирует дыхательную мускулатуру.

3). Уменьшает неблагоприятные влияния ИВЛ на гемодинамику, ВЧД и мозговой

кровоток.

4). Корректирует газовый состав крови и РН.

Исходя из вышеизложенного, оптимальными режимами ИВЛ являются те, которые позволяют синхронизировать работу пациента и вентилятора. В начальной фазе лечения пациента допустимо подавить его дыхательную активность гипервентиляцией, однако, следует помнить о ее неблагоприятном воздействии на мозговой кровоток. CMV (control mandatory ventilation) – управляемая принудительная вентиляция должна применяться при апноэ любого генеза и гиповентиляции (гипоксемия + гиперкапния). Также оправдано ее применение для снижения повышенной работы дыхания пациента (и системного потребления кислорода) при тяжелой ДН. При этом, однако, приходится подавлять дыхательную активность гипервентиляцией, седацией и/или миоплегией.

Несмотря на то, что CMV может быстро и эффективно восстановить газообмен, у нее есть существенные недостатки. К недостаткам CMV относятся: необходимость постоянного, жесткого контроля оксигенации и вентиляции, так как пациент не может их контролировать, снижение сердечного выброса, задержка жидкости в организме, гипотрофия дыхательной мускулатуры (при длительном применении), гипервентиляция может вызвать бронхоспазм. Общая продолжительность ИВЛ при использовании CMV увеличивается. Поэтому CMV должна применяться как вынужденная и, желательно, кратковременная мера.

По мере улучшения состояния пациента вентиляционная поддержка должна постепенно уменьшаться. Это стимулирует его дыхательную активность, позволяет ему частично контролировать газообмен и тренировать дыхательную мускулатуру. Мероприятия по снижению вентиляционной поддержки можно проводить разными способами. Выбор способа зависит от возможностей и качества используемой дыхательной аппаратуры и опыта врача.

Наиболее простым решением является применение режима IMV (intermittent mandatory ventilation) – перемежающейся принудительной вентиляции. Этот режим не требует использования сложной дыхательной аппаратуры (подходит любая) и заключается в постепенном снижении частоты механических вдохов. Между механическими вдохами пациент дышит самостоятельно, используя непрерывный поток в дыхательном контуре. МОД контролируется врачом лишь частично. Это представляет определенную опасность при нерегулярной дыхательной активности и требует внимания персонала. При хорошей дыхательной активности и поэтапном снижении частоты механических вдохов МОД постепенно переходит под полный контроль пациента.