Для изготовления инъекционных растворов применяют воду очищенную повышенной чистоты, полученную дистилляцией или методом обратного осмоса (вода для инъекций).

Вода для инъекций (Aqua pro injectionibus) должна отвечать требованиям, предъявляемым к воде очищенной, но, кроме того, должна быть апирогенной и не содержать антимикробных веществ и других добавок. Пирогенные вещества не перегоняются с водяным паром, но могут попасть в конденсат с каплями воды, если дистилляционные аппараты не снабжены устройствами для отделения капель воды от пара.

Сбор воды для инъекций, как и воды очищенной, проводят в стерилизованные (обработанные паром) сборники промышленного производства или стеклянные баллоны, которые должны иметь соответствующую маркировку (бирки с указанием даты получения воды). Разрешается иметь суточный запас воды для инъекций при условии ее стерилизации сразу же после получения, хранения в плотно закрытых сосудах в асептических условиях.

Во избежание контаминации микроорганизмами, полученную пирогенную воду используют для изготовления инъекционных лекарственных форм сразу же после перегонки или в течение 24 ч, сохраняя при температуре от 5 до 10 °С или от 80 до 95 °С в закрытых емкостях, исключающих загрязнение воды инородными частицами и микроорганизмами.

Для инъекционных лекарственных форм, изготовляемых в асептических условиях и не подлежащих последующей стерилизации, воду для инъекций предварительно стерилизуют насыщенным паром.

Производство и хранение апирогенной воды для инъекционных лекарственных форм находятся под систематическим контролем санитарно-эпидемиологической и контрольно-аналитической служб.

Для изготовления инъекционных и асептических лекарственных форм разрешено применять неводные растворители (жирные масла) и смешанные растворители (смеси растительных масел с этилолеатхзм, бензилбензоатом, водно-глицериновые, этаноло-водно-глицериновые). В составе комплексных растворителей применяют пропиленгликоль, ПЭО-400, спирт бензиловый и др.

Неводные растворители обладают разной растворяющей способностью, антигидролизными, бактерицидными свойствами, способны удлинять и усиливать действие лекарственных веществ. Смешанные растворители, как правило, обладают большей растворяющей способностью, чем каждый растворитель по отдельности. Сорастворители нашли применение при изготовлении инъекционных растворов веществ, труднорастворимых в индивидуальных растворителях (гормонов, витаминов, антибиотиков и др.).

Для изготовления инъекционных растворов используют масла персиковое, абрикосовое и миндальное (Olea pinguia) - сложные эфиры глицерина и высших жирных кислот (главным образом, олеиновой). Обладая малой вязкостью, они сравнительно легко проходят через узкий канал иглы шприца.


Масла для инъекций получают методом холодного прессования из хорошо обезвоженных семян. Они не должны содержать белка, мыла (<0,001 %). Обычно масло жирное содержит липазу, которая в присутствии ничтожно малого количества воды вызывают гидролиз сложноэфирной связи триглицерида с образованием свободных жирных кислот. Кислые масла раздражают нервные окончания и вызывают болезненные ощущения, поэтому кислотное число жирных масел не должно быть более 2,5 (< 1,25 % жирных кислот, в пересчете на кислоту олеиновую).

Отрицательные свойства масляных растворов - высокая вязкость, болезненность инъекций, трудное рассасывание масла, возможность образования олеом. Для снижения отрицательных свойств в некоторых случаях в масляные растворы добавляют сорастворители (этилолеат, спирт бензиловый, бензилбензоат и др.). Масла применяют для изготовления растворов камфоры, ретинола ацетата, синэстрола, дезоксикортикостерона ацетата и других, главным образом для внутримышечных инъекций и довольно редко - для подкожных.

Этанол (Spiritus aethylicus) применяют как сорастворитель при изготовлении растворов сердечных гликозидов и как антисептик, находит применение в составе противошоковых жидкостей.

Этанол, применяемый в растворах для инъекций, должен иметь высокую степень чистоты (без примеси альдегидов и сивушных масел). Применяют его в концентрации до 30 %.

Этиловый спирт иногда используют как промежуточный растворитель веществ, не растворимых ни в воде, ни в масле. Для этого вещества растворяют в минимальном объеме спирта, смешивают с оливковым маслом, а затем этанол отгоняют под вакуумом и получают практически молекулярный раствор вещества в масле. Такой технологический прием используют при изготовлении масляных растворов некоторых противоопухолевых веществ.

Спирт бвнзиловый (Spiritus benzylicus) - бесцветная, легкоподвижная, нейтральная жидкость с ароматическим запахом. Растворим в воде в концентрации около 4 %, в 50 % этаноле - в соотношении 1:1. С органическими растворителями смешивается во всех соотношениях. Применяют как сорастворитель в масляных растворах в концентрации от 1 до 10%. Обладает бактериостатическим и кратковременным анестезирующим действиями.

Глицерин (Glycerinum) в концентрации до 30 % применяют в растворах для инъекций. В больших концентрациях обладает раздражающим действием вследствие нарушения осмотических процессов в клетках. Глицерин улучшает растворимость в воде сердечных гликозидов и др. В качестве дегидратирующего средства (при отеках мозга, легких) глицерин вводят внутривенно в виде 10 - 30% растворов в изотоническом растворе натрия хлорида.

Этилолеат (Ethylii oleas). Это сложный эфир ненасыщенных жирных кислот с этанолом. Он представляет собой светло-желтую жидкость, не растворимую в воде. С этанолом и маслами жирными этилолеат смешивается во всех соотношениях. В этилолеате хорошо растворяются жирорастворимые витамины, гормоны. Применяют в составе масляных растворов для повышения растворимости и понижения вязкости растворов.

Бензилбензоат (Benzylii benzoas) - бензиловый эфир бензойной кислоты - бесцветная, маслянистая жидкость, смешивается с этанолом и маслами жирными, повышает растворимость в маслах стероидных гормонов, предотвращает кристаллизацию веществ из масел в процессе хранения.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Дайте определение «тары». Какие материалы используют для изготовления тары?

2. Какие виды укупорочных средств используют в аптечной практике?

3. Как проводится обработка аптечной тары и средств укупорки?

4. Как осуществляют контроль чистоты посуды в аптечной практике?

5. Каков режим стерилизации аптечной тары и средств укупорки?

Введение

1. Инъекционные формы, их характеристика

1.1 Преимущества и недостатки инъекционного введения

1.2 Требования к инъекционным лекарственным формам

1.3 Классификация инъекционных растворов

2. Технология инъекционных растворов в условиях аптеки

2.1 Приготовление инъекционных растворов без стабилизаторов

2.2 Приготовление инъекционных растворов со стабилизатором

2.3 Приготовление физиологических растворов в аптечных условиях

Заключение

Список литературы

Введение

В современных условиях производственная аптека - рациональное и экономически выгодное звено в организации лечебного процесса. Основная ее задача - наиболее полное, доступное и своевременное удовлетворение потребностей стационарных больных в лекарственных средствах, дезинфекционных растворах, перевязочных материалах и т.д.

Неотъемлемым элементом полноты и доступности лекарственной помощи является наличие в аптеках, помимо готовых лекарственных средств, экстемпоральных лекарственных форм. В основном это лекарственные средства, которые не производятся фармпредприятиями.

На долю инфузионных растворов приходится 65% всех экстемпорально приготовленных форм: растворы глюкозы, натрия хлорида, калия хлорида разной концентрации, аминокапроновая кислота, натрия гидрокарбонат и т.д.

Удельный вес инъекционных растворов в экстемпоральной рецептуре хозрасчетных аптек составляет около 15%, а в аптеках лечебно-профилактических учреждений достигает 40-50% .

Инъекционные растворы – это лекарства, вводимые в организм при помощи шприца с нарушением целостности кожных и слизистых покровов, являются сравнительно новой лекарственной формой.

Идея введения лекарственных веществ через нарушенный кожный покров возникла в 1785 г., когда врач Фуркруа с помощью специальных лезвий (скарификаторов) делал на коже насечки и в полученные ранки втирал лекарственные вещества.

Впервые подкожное впрыскивание лекарств было осуществлено в начале 1851 г. русским врачом Владикавказского военного госпиталя Лазаревым. В 1852 г. Правацем был предложен шприц современной конструкции. Начиная с этого времени, инъекции стали общепризнанной лекарственной формой.

1. Инъекционные формы, их характеристика

1.1 Преимущества и недостатки инъекционного введения

Необходимо отметить следующие преимущества эстемпорального производства инъекционных лекарственных форм по сравнению с использованием готовых лекарственных форм:

Обеспечение быстрого терапевтического эффекта;

Возможность изготовления лекарства для конкретного больного с учетом веса, возраста, роста и т.д. по индивидуальным прописям;

Возможность точно дозировать лекарственное вещество;

Вводимые лекарственные вещества поступают в кровяное русло, минуя такие защитные барьеры организма, как желудочно-кишечный тракт и печень, способные изменять, а иногда и разрушать лекарственные вещества;

Возможность ввести лекарственные вещества больному, находящемуся в бессознательном состоянии;

Краткость времени между приготовлением и использованием лекарственного средства;

Возможность создания больших запасов стерильных растворов, что облегчает и ускоряет их отпуск из аптек;

Отсутствие необходимости коррекции вкуса, запаха, цвета лекарственной формы;

Более низкая стоимость по сравнению с препаратами промышленного производства.

Но инъекционное введение лекарственных средств, помимо преимуществ имеет и отрицательные стороны:

При введении жидкостей через поврежденный покров кожи в кровь легко могут попасть патогенные микроорганизмы;

Вместе с раствором для инъекций в организм может быть введен воздух, вызывающий эмболию сосудов или расстройство сердечной деятельности;

Даже незначительные количества посторонних примесей могут оказать вредное влияние на организм больного;

Психоэмоциональный аспект, связанный с болезненностью инъекционного пути введения;

Инъекции лекарств могут осуществляться только квалифицированными специалистами.

1.2 Требования к инъекционным лекарственным формам

К лекарственным формам для инъекций предъявляются следующие требования: стерильность, отсутствие механических примесей, стойкость, апирогенность, к отдельным инъекционным растворам - изотоничность, что указывается в соответствующих статьях или рецептах .

Парентеральное применение препаратов предполагает нарушение кожного покрова, что связано с возможным инфицированием патогенными микроорганизмами и введением механических включений.

Стерильность инъекционных растворов, приготовляемых в условиях аптеки, обеспечивается в результате неукоснительного соблюдения правил асептики, а также стерилизации этих растворов. Стерилизацией, или обеспложиванием, называется полное уничтожение в том или ином объекте жизнеспособной микрофлоры.

Асептические условия производства лекарственных препаратов – это комплекс технологических и гигиенических мероприятий обеспечивающих защиту продукта от попадания в него микроорганизмов на всех этапах технологического процесса.

Асептические условия необходимы при изготовлении термолабильных препаратов, а также малоустойчивых систем – эмульсий, взвесей, коллоидных растворов, то есть препаратов, не подвергаемых стерилизации.

Также не меньшую роль играют соблюдение правил асептики при приготовлении лекарственных препаратов выдерживающих термическую стерилизацию, так как этот метод стерилизации не освобождает продукт от погибших микроорганизмов и их токсинов, что может привести к пирогенной реакции при инъекции такого препарата.

Отсутствие механических примесей . Все инъекционные растворы не должны содержать каких-либо механических примесей и должны быть совершенно прозрачными. В инъекционном растворе могут содержаться частицы пыли, волокна материалов, используемых для фильтрования, любые иные твердые частицы, которые могут попасть в раствор из посуды, в которой он готовится. Главная опасность наличия в инъекционном растворе твердых частиц - возможность закупорки сосудов, которая может вызвать смертельный исход в случае, если закупоренными окажутся сосуды, питающие сердце или продолговатый мозг.

Источниками механических загрязнений могут быть некачественная фильтрация, технологическое оборудование, особенно его трущиеся детали, окружающий воздух, персонал, некачественно подготовленные ампулы.

Из этих источников в продукт могут попасть микроорганизмы, частички металла, ржавчины, стекла, древесные резины, угля, золы, крахмала, талька, волокна, асбеста.

Апирогенность . Апирогенностью называется отсутствие в инъекционных растворах продуктов метаболизма микроорганизмов - так называемых пирогенных веществ, или пирогенов. Свое название пирогены (от лат. руг - жар, огонь) получили за способность вызывать повышение температуры при попадании в организм, возможно иногда падение артериального давления, озноб, рвота, понос.

В производстве инъекционных препаратов от пирогенов освобождаются различными физико-химическими методами – путем пропускания раствора через колонки с активированным углем, целлюлозой, мембранные ультрафильтры.

В соответствии с требованиями ГФХ инъекционные растворы не должны содержать пирогенных веществ. Для обеспечения этого требования инъекционные растворы готовят на апирогенной воде для инъекций (или маслах) с использованием медикаментов и других вспомогательных веществ, не содержащих пирогенов .

1.3 Классификация инъекционных растворов

Лекарственные средства для парентерального применения классифицируются следующим образом:

Инъекционные лекарственные средства;

Внутривенные инфузионные лекарственные средства;

Концентраты для инъекционных или внутривенных инфузионных лекарственных средств;

Порошки для инъекционных или внутривенных инфузионных лекарственных средств;

Имплантаты.

Инъекционные лекарственные средства - это стерильные растворы, эмульсии или суспензии. Растворы для инъекций должны быть прозрачными и практически свободными от частиц. Эмульсии для инъекций не должны обнаруживать признаков расслоения. Суспензия для инъекций при взбалтывании должна быть достаточно стабильной для того, чтобы обеспечить необходимую дозу при введении.

Внутривенные инфузионные лекарственные средства - это стерильные водные растворы или эмульсии с водой в качестве дисперсионной среды; должны быть свободны от пирогенов и обычно изотоничны крови. Предназначаются для применения в больших дозах, поэтому не должны содержать никаких антимикробных консервантов.

Концентраты для инъекционных или внутривенных инфузионных лекарственных средств – это стерильные растворы, предназначенные для инъекций или инфузий. Концентраты разводят до указанного объема и после разведения полученный раствор должен соответствовать требованиям, предъявляемым к инъекционным лекарственным средствам.

Порошки для инъекционных лекарственных средств представляют собой твердые стерильные вещества, помещенные в контейнер. При встряхивании с указанным объемом соответствующей стерильной жидкости они быстро образуют или прозрачный, свободный от частиц раствор, или однородную суспензию. После растворения они должны соответствовать требованиям, предъявляемым к инъекционным лекарственным средствам .

Имплантаты представляют собой стерильные твердые лекарственные средства, имеющие подходящие для парентеральной имплантации размеры и форму, и высвобождающие действующие вещества в течение длительного периода времени. Они должны быть упакованы в индивидуальные стерильные контейнеры.

2. Технология инъекционных растворов в условиях аптеки

В соответствии с указаниями ГФХ, в качестве растворителей для приготовления инъекционных растворов применяют воду для инъекций, персиковое и миндальное масла. Вода для инъекций должна отвечать требованиям статьи № 74 ГФХ. Персиковое и миндальное масла должны быть стерильными, а их кислотное число не превышать 2,5.

Инъекционные растворы должны быть прозрачными. Проверку производят при просмотре в свете рефлекторной лампы и обязательном встряхивании сосуда с раствором.

Инъекционные растворы готовят массо-объемным способом: лекарственное вещество берут по массе (весу), растворитель - до требуемого объема.

Количественное определение лекарственных веществ в растворах производят согласно указаниям в соответствующих статьях. Допустимое отклонение содержания лекарственного вещества в растворе не должно превышать ±5% от указанного на этикетке, если в соответствующей статье нет другого указания.

Исходные лекарственные препараты должны удовлетворять требования ГФХ. Кальция хлорид, кофеин-бензоат натрия, гексаметилентетрамин, натрия цитрат, а также магния сульфат, глюкоза, кальция глюконат и некоторые другие должны употребляться в виде сорта «для инъекций», обладающего повышенной степенью чистоты.

Во избежание загрязнения пылью, а вместе с ней и микрофлорой препараты, употребляемые для приготовления инъекционных растворов и асептических лекарств, хранят в отдельном шкафу в небольших банках, закрытых притертыми стеклянными пробками, защищенными от пыли стеклянными колпачками. При наполнении этих сосудов новыми порциями препаратов банка, пробка, колпачок должны каждый раз подвергать тщательному мытью и стерилизации.

Не допускается одновременное приготовление нескольких инъекционных лекарств, содержащих различные ингредиенты или одинаковые ингредиенты, но в различных концентрациях, а также одновременное приготовление инъекционного и какого-либо другого лекарства.

На рабочем месте при изготовлении инъекционных лекарств не должно находиться никаких штангласов с лекарственными препаратами, не имеющими отношения к приготовляемому лекарству.

В аптечных условиях особое значение приобретает чистота посуды для приготовления инъекционных лекарств. Для мойки посуды применяют разведенный в воде в виде взвеси 1:20 порошок горчицы, а также свежеприготовленный раствор перекиси водорода 0,5-1% с добавлением 0,5-1% моющих средств («Новость», «Прогресс», «Сульфанол» и другие синтетические моющие средства) или смесь 0,8-1% раствора моющего средства «Сульфанол» и тринатрийфосфата в соотношении 1:9.

Посуду вначале замачивают в моющем растворе, нагретом до 50-60 °С, в течение 20-30 мин, а сильно загрязненную - до 2 ч и более, после чего тщательно моют и ополаскивают сначала несколько (4-5) раз водопроводной водой, а затем 2-3 раза дистиллированной водой. После этого посуду стерилизиуют в соответствии с указаниями ГФХ.

Ядовитые вещества, необходимые для приготовления инъекционных лекарств, взвешиваются рецептаром-контролером в присутствии ассистента и немедленно используются последним для приготовления лекарства. Получая ядовитое вещество, ассистент обязан убедиться в соответствии наименования штангласа назначению в рецепте, а также в правильности набора гирь и взвешивания.

На все без исключения инъекционные лекарства, приготовленные ассистентом, последний обязан немедленно составить контрольный паспорт (талон) с точным указанием названий взятых ингредиентов лекарства, их количеств и личной подписью.

Все инъекционные лекарства до стерилизации должны подвергаться химическому контролю на подлинность, а при наличии химика-аналитика в аптеке - и количественному анализу. Растворы новокаина, атропина сульфата, кальция хлорида, глюкозы и изотонический раствор натрия хлорида при любых обстоятельствах в обязательном порядке подлежат качественному (идентификация) и количественному анализу.

Во всех случаях инъекционные лекарства должны приготавливаться в условиях максимально ограниченного загрязнения лекарства микрофлорой (асептические условия). Соблюдение этого условия обязательно для всех инъекционных лекарств, в том числе проходящих заключительную стерилизацию.

Правильная организация работы по приготовлению инъекционных лекарств предполагает заблаговременное обеспечение ассистентов достаточным набором простерилизованной посуды, вспомогательных материалов, растворителей, мазевых основ и т. п.

2.1 Приготовление инъекционных растворов без стабилизаторов

Приготовление инъекционных растворов без стабилизаторов складывается из следующих последовательных операций:

Расчет количества воды и сухих лекарственных веществ;

Отмеривание необходимого количества воды для инъекций и отвешивание лекарственных веществ;

Растворение;

Подготовка флакона и укупорочных средств;

Фильтрование;

Оценка качества инъекционного раствора;

Стерилизация;

Оформление к отпуску;

Оценка качества.

Rp.: Solutionis 25% 30ml

Da. Signa: по 1мл внутримышечно 3 раза в день

Выписан раствор вещества, хорошо растворимого в воде, для парентерального применения.

Расчеты.

Анальгина 7,5

Воды для инъекций

30 – (7,5х0.68) = 34,56мл

0,68 – коэффициент увеличения объема анальгина

Технология.

Создание асептических условий достигается приготовлением инъекционных лекарственных средств из стерильных медикаментов, в стерильной посуде и в специально оборудованном помещении. Однако асептика не может гарантировать полную стерильность растворов, поэтому они в дальнейшем подвергаются стерилизации.

При расчете количества воды для инъекций необходимо учитывать, что концентрация анальгина превышает 3% и поэтому необходимо учитывать коэффициент увеличения объема.

В асептическом блоке в стерильной подставке в 34,65мл свежеперегнанной воды для инъекций растворяют 7,5г анальгина. Приготовленный раствор фильтруют через двойной стерильный бензольный фильтр с комочком длинноволокнистой ваты. Можно для фильтрации использовать стеклянный фильтр №4. раствор фильтруют в стерильный флакон объемом 50мл из нейтрального стекла.

Укупоривают флакон стерильной резиновой пробкой и обкатывают металлическим колпачком. Проверяют раствор на прозрачность, отсутствие механических включений, цветность. Затем раствор стерилизуют в автоклаве при 120°С 8 минут. После стерилизации и охлаждения раствор передают на контроль повторно.

Флакон прозрачного стекла укупорен герметично резиновой пробкой «под обкатку», наклеивают номер рецепта и этикетки: «Для инъекций», «Стерильно», «Хранить в прохладном и защищенном от света месте», «Беречь от детей».

Дата № рецепта

Injectionibus 43,65

Простерилизовано

Приготовил

Проверил

2.2 Приготовление инъекционных растворов со стабилизатором

При изготовлении инъекционных растворов необходимо принимать меры к обеспечению сохранности лекарственных веществ.

Стабильность - это неизменность свойств содержащихся в растворах лекарственных веществ - достигается подбором оптимальных условий стерилизации, использованием консервантов, применением стабилизаторов, соответствующих природе лекарственных веществ. Несмотря на многообразие и сложность процессов разложения лекарственных веществ, наиболее часто имеют место гидролиз и окисление.

Лекарственные вещества, требующие стабилизации их водных растворов, можно разделить на три группы:

1) соли образованные сильными кислотами и слабыми основания­ми;

2) соли, образованные сильными основаниями и сла­быми кислотами;

3) легкоокисляющиеся вещества.

Стабилизация растворов солей сильных кислот и сла­бых оснований (соли алкалоидов и азотистых оснований) осуществляется добавлением кислоты. Водные растворы таких солей вследствие гидролиза имеют слабокислую реакцию. При тепловой стерилизации и хранении таких растворов рН повышается ввиду усиления гидролиза, сопровождающегося уменьшением концентрации водородных ионов. Сдвиг рН раствора приводит к гидролизу солей алкалоидов с образованием мало растворимых оснований, которые могут выпадать в осадок.

Прибавление к растворам солей сильных кислот и слабых оснований свободной кислоты подавляет гидролиз и таким образом обеспечивает стабильность инъекционного раствора. Количество кислоты, необходимое для стабилизации растворов солей, зависит от свойств вещества, а также оптимальной границы рН раствора (обычно рН 3,0-4,0). 0,1 н раствор хлористоводородной кислоты используют для стабилизации растворов дибазола, новокаина, спазмолитика, совкаина, атропина сульфата и др .

Rp.: Solutionis Dibazoli 1% 50ml

Da. Signa: по 2 мл 1 раз в день подкожно

Выписана жидкая лекарственная форма для инъекционного применения, представляющая собой истинный раствор, в состав которого входит вещество группы Б.

Расчеты.

Дибазола 0,5

Раствора кислоты

хлористоводородной 0,1 и

Воды для инъекций до 50 мл

Технология

В рецепте пописан раствор для подкожного введения, в состав которого входит вещество, трудно растворимое в воде. Инъекционные растворы дибазола нуждаются в стабилизации 0,1н хлористоводородной кислоты.

В асептических условиях в стерильной мерной колбе емкостью 50мл в части воды для инъекций растворяют 0,5г дибазол, добавляют 0,5 0,1н раствора хлористоводородной кислоты м доводят водой до метки. приготовленный раствор фильтруют в склянку для отпуска емкостью 50мл из нейтрального стекла через двойной стерильный беззольный фильтр с подложенным комочком длинноволокнистой ваты.

Флакон укупоривают и проверяют раствор на отсутствие механических примесей, для чего склянку переворачивают вверх дном и просматривают в проходящем свете на черно-белом фоне. Если при просмотре обнаруживаются механические частицы, операцию фильтрации повторяют. Затем горловину склянки с пробкой обвязывают стерильной и еще влажной пергаментной бумагой с удлиненным концом 3х6см, на котором ассистент должен сделать запись графитным карандашом о входящих ингредиентах и их количестве, и поставить личную подпись.

Склянку мс приготовленным раствором помещают в бикс и стерилизуют при 120°С 8 минут. После охлаждения раствор передают на контроль.

Дата № рецепта

Solutionis acidi

Hidrychloridi 0,1 № 50ml

Объем 50мл

Простерилизовано

Приготовил

Проверил

Стабилизация солей сильных оснований и слабых кис лот осуществлется добавлением щелочи или натрия гидрокарбоната. Растворы солей, образованных сильными основаниями и кислотами, диссоциируют с образованием слабодиссоциирующей кислоты, что влечет к умень­шению свободных ионов водорода, а, как следствие, к увеличению рН раствора. Для подавления гидролиза подобных растворов солей необходимо добавить щелочь. К числу солей, стабилизируемых едким натрием или натрия гидрокарбонатом, относятся: никотиновая кислота, кофеин-бензоат натрия, натрия тиосульфат, натрия нитрит.

Стабилизация растворов легковоспламеняющихся веществ . К легкоокисляющимся лекарственным веществам следует отнести аскорбиновую кислоту, натрия салицилат, сульфацил натрия, стрептоцид растворимый, аминазин и др.

Для стабилизации этой группы препаратов используют антиоксиданты - вещества, обладающие большим окислительно-восстановительным потенциалом, чем стабилизируемые лекарственные вещества. К этой группе стабилизаторов относятся: сульфит и метабисульфит натрия, ронга­лит, аскорбиновая кислота и др. Другая группа антиоксидантов способна связывать ионы тяжелых металлов, катализирующих окислительные процессы. К ним относятся этилендиаминтетрауксусная кислота, трилон Б и др.

Растворы ряда веществ не могут приобрести необходимую устойчивость при использовании какой-либо одной формы защиты. В этом случае прибегают к комбинированным формам защиты. Комбинированную защиту используют для растворов сульфацила натрия, адреналина гидрохлорида, глюкозы, аскорбиновой кислоты и некоторых других веществ.

2.3 Приготовление физиологических растворов в аптечных условиях

Физиологическими называются растворы, которые по составу растворённых веществ способны поддерживать жизнедеятельность клеток, переживающих органов и тканей, не вызывая существенных сдвигов физиологического равновесия в биологических системах. По своим физико-химическим свойствам такие растворы и примыкающие к ним кровезамещающие жидкости весьма близки к плазме человеческой крови. Физиологические растворы обязательно должны быть изотоничными, содержать хлориды калия, натрия, кальция и магния в соотношениях и количествах, характерных для кровяной сыворотки. Очень важна их способность сохранять постоянство концентрации водородных ионов на уровне, близком к рН крови (~7,4), что достигается введением в их состав буферов.

Большинство физиологических растворов и кровезамещающих жидкостей для обеспечения лучшего питания клеток и создания необходимого окислительно-восстановительного потенциала обычно содержат глюкозу, а также некоторые высокомолекулярные соединения.

Наиболее распространенными физиологическими растворами являются жидкость Петрова, раствор Тироде, раствор Рингера - Локка и ряд других. Иногда физиологическим условно называют 0,85% раствор натрия хлорида, применяющийся в виде вливаний под кожу, в вену, в клизмах при кровопотерях, интоксикациях, при шоке и т. д., а также для растворения ряда медикаментов при инъекционном введении.

Rp.: Natrii chloride 8,0

Kalii chloride 0,2

Calcii chloride 0,2

Natrii hydrpcarbonatis 0,2

M. Sterilisetur!

Выписана жидкая лекарственна форма для внутривенного, а также для введения в клизмах при больших потерях жидкости организмом и при интоксикации. Лекарственная форма является истинным раствором, в состав которого не входят вещества списка А и Б.

Расчеты

Натрия хлорида 8,0

Кальция хлорида 0,2

Натри гидрокарбоната 0,2

Глюкозы 1,0

Воды для инъекций 1000мл

Технология

В прописи представлены вещества, которые хорошо растворяются прописанном количестве воды. Раствор Рингера-Локка готовят путем последовательного растворения солей и глюкозы в 1000мл воды (количествр сухих ингредиентов менее 3%). При этом необходимо избегать сильного встряхивания для того, чтобы предотвратить потерю углекислоты при добавлении натрия гидрокарбоната. После растворения веществ раствор фильтруют, разливают во флаконы для кровозаменителей.

Стерилизацию проводят в паровых стерилизаторах при 120°С в течение 12-14 мин. При изготовлении и стерилизации этого раствора допустимо совместное присутствие натрия гидрокарбоната и кальция хлорида, так как суммарное содержание ионов кальция очень незначительно (не превышает 0,005%) и не может вызвать помутнения раствора. Вскрывать флаконы разрешается только по истечении 2часов после стерилизации. Срок годности раствора, приготовленного в аптеке, 1 месяц.

Дата № рецепта

Aquae pro injectionibus 1000ml

Natrii chloride 8,0

Kalii chloride 0,2

Сalcii chloride 0,2

Объем 1000мл

Простерилизовано!

Проиготовил

Проверил

Заключение

В настоящее время проводится большая работа по совершенствованию изготовления инъекционных растворов.

1. Разрабатываются новые способы и аппараты для получения воды для инъекций высокого качества.

2. Изыскиваются возможности обеспечения необходимых асептических условий изготовления, позволяющих выполнить требования стандарта GMR.

3. Расширяется ассортимент моющих, дезинфицирующих и моющедезинфицирующих средств.

4. Совершенствуется технологический процесс, используются современные производственные модули, разрабатываются новые современные приборы и аппараты (мерники-смесители, фильтрующие установки, установки ламинарного потока воздуха, стерилизующие аппараты, приборы для контроля отсутствия механических включений и др.).

5. Совершенствуется качество исходных субстанций, растворителей, расширяется ассортимент стабилизаторов различного назначения.

6. Расширяются возможности внутриаптечной заготовки растворов.

7. Совершенствуются методы оценки качества и безопасности инъекционных растворов.

8. Внедряются новые вспомогательные материалы, упаковочные и укупорочные средства.

Список литературы

1. Белоусов Ю.Б., Леонова М.В. Основы клинической фармакологии и рациональной фармакотерапии. - М.: Бионика, 2002. - 357 с.

2.Беседина И.В., Грибоедова А.В., Корчевская В.К. Совершенствование условий приготовления инъекционных растворов в аптеке с целью обеспечения их апирогенности // Фармация.- 1988.- №2.- с. 71-72.

3. Беседина И.В., Карчевская В.В. Оценка чистоты инъекционных растворов аптечного изготовления в процессе применения // Фармация.- 1988.- №6.- с. 57-58.

4. Губин М.М. Проблемы изготовления инъекционных растворов в производственных аптеках // Фармация. – 2006. - №1.

5. Молдовер Б.Л. Асептически изготовляемые лекарственные формы Санкт-Петербург, 1993.

6. Предварительная и стерилизующая фильтрация инъекционных растворов, парентеральных препаратов большого объёма. http://www.septech.ru/items/70

7. Сбоев Г.А., Краснюк И.И. Проблемы гармонизации аптечной практики c международной системой фармацевтической помощи. // Ремедиум. 30.07.2007 г.

8. Современные аспекты технологии и контроля качества стерильных растворов в аптеках / Под ред. М.А.Алюшина. – М.: Всесоюз. Центр науч.-фармац. информ. ВО Союзфармация, 1991. – 134с.

9. Справочник Видаль. Лекарственные препараты в России. – М.: АстраФарм-Сервис, 1997. – 1166 с.

10. Ушкалова Е.А. Фармакокинетические лекарственные взаимодействия //Новая аптека. - 2001. - № 10. - С.17-23.

К лекарственным формам для инъекций относятся водные и масляные растворы, суспензии и эмульсии, а также стерильные порошки и таблетки, которые растворяют в стерильном растворителе непосредственно перед введением. Все эти жидкости вводятся в организм через полую иглу с нарушением целости кожных и слизистых покровов. Различают две формы такого введения жидкостей в организм - инъекция (injectio) и вливание (infusio). Различие между ними заключается в том, что первые представляют собой сравнительно небольшие количества жидкости, вводимые с помощью шприца, а вторые - большие количества жидкости, вводимые с помощью аппарата Боброва или других приспособлений. В аптечной практике обычно применяется один общий термин - инъекция.

Характеристика лекарственной формы

Виды инъекций. В зависимости от места введения различают следующие виды инъекций: внутрикожные (интракутанные) (injectiones intracutaneae). Весьма малые количества жидкости (0,2-0,5 мл) вводятся в кожу между ее наружным (эпидерма) и внутренним (дерма) слоями; подкожные (injectiones subcutaneae). Малые количества жидкости (1-2 мл) при инъекциях и менее 500 мл при вливаниях вводят в подкожную жировую клетчатку в участки, относительно бедные сосудами и нервами, главным образом в наружную поверхность плеч и подлопаточные области (при инъекциях). Всасывание происходит через лимфатические сосуды, откуда лекарственные вещества попадают в ток крови;

внутримышечные (injectiones intramusculares). Малые количества (до 50 мл) жидкости, обычно 1-5 мл, вводят в толщу мышц, преимущественно в область ягодиц, в верхненаружный квадрант, наименее богатый сосудами и нервами. Всасывание лекарственных веществ происходит через лимфатические сосуды; внутривенные (injectiones intrave nosae). Водные растворы в количестве от 1 до 500 мл и более вводят непосредственно в венозное русло, чаще в локтевую вену. Вливание больших количеств раствора проводят медленно (за 1 ч 120-180 мл). Часто оно проводится капельным методом (в этом случае раствор вводится в вену не через иглу, а через канюлю со скоростью 40-60 капель в минуту); внутриартериальные (injectiones intraarteriales). Растворы вводят обычно в бедренную или плечевую артерию. Действие лекарственных веществ в этом случае проявляется особенно быстро (через 1-2 с); центральный спинномозговой канал (injectiones intraarachnoidales, s. injectiones cerebrospinaies, s. injectiones endolumbalis). Малые количества жидкости (1-2 мл) вводят в зоне III-IV-V поясничных позвонков в подпаутинное пространство (между мягкой и паутинной оболочками).

Реже используются другие виды инъекций: подзатылочные (injectiones suboccipitales), околокорешковые (injectiones paravertebrales), внутрикостные, внутрисуставные, внутриплевральные и т. д.

Инъекционные лекарственные формы представляют собой в основной массе истинные растворы, но для инъекций могут также использоваться коллоидные растворы, суспензии и эмульсии. Внутрисосудистыми инъекциями могут быть только водные растворы. Масляные растворы вызывают эмболию (закупоривание капилляров). Для внутрисосудистых инъекций эмульсии (типа М/В) и суспензии пригодны лишь в том случае, если размеры частиц дисперсной фазы в них будут не более 1 мкм. Вазелиновое масло в качестве растворителя непригодно даже для внутримышечного и подкожного введения, поскольку образует болезненно устойчивые олеомы (масляные опухоли).

Преимущества и недостатки инъекционного способа введения. Инъекционный способ введения лекарственных форм имеет ряд преимуществ. К ним относятся: быстрота действия вводимых лекарственных веществ; отсутствие разрушительного действия ферментов желудочно-кишечного тракта и печени на лекарственные вещества; отсутствие действия лекарственных веществ на органы вкуса и обоняния и раздражения желудочно-кишечного тракта; полное всасывание вводимых лекарственных веществ; возможность локализации действия лекарственного вещества (в случае применения анестезирующих веществ); точность дозирования; возможность введения лекарственной формы больному, находящемуся в бессознательном состоянии; замена крови после значительных ее потерь; возможность заготовки стерильных лекарственных форм впрок в ампулах).

К числу недостатков инъекционного способа введения лекарственных форм нужно отнести его болезненность, что особенно нежелательно в детской практике; инъекции может производить только медперсонал.

При внутривенном введении лекарственное вещество поступает немедленно и полно в большой круг кровообращения, проявляя при этом максимально возможный лечебный эффект. Таким путем определяется абсолютная биологическая доступность лекарственного вещества. Одновременно внутривенный раствор может служить стандартной лекарственной формой при определении биологической доступности лекарственных веществ, назначенных в иных лекарственных формах (относительная биологическая доступность).

Использование инъекционных лекарственных форм стало возможным в результате изыскания эффективных способов их стерилизации, изобретения прибора (шприца) для их введения и, наконец, изобретения специальных сосудов (ампул) для хранения стерильных лекарственных форм. В современной рецептуре инъекции занимают весьма значительное место, причем большей частью они отпускаются в ампулах. В аптеках лечебных учреждений инъекции составляют 30-40% всех экстемпорально изготовленных лекарственных форм.

Требования, предъявляемые к инъекционным лекарственным формам

К изготовленным инъекционным растворам предъявляются следующие требования: отсутствие механических примесей (полная прозрачность); стабильность растворов; стерильность и апирогенность; специальные требования.

Успешное выполнение указанных требований в значительной степени зависит от научно обоснованной организации труда фармацевта. Категорически запрещается одновременное изготовление на одном рабочем месте нескольких растворов для инъекций, содержащих разные вещества или одни и те же вещества, но в различных концентрациях. Изготовление растворов для инъекций не может проводиться при отсутствии данных: о химической совместимости входящих компонентов, технологии изготовления, режиме стерилизации, а также при отсутствии методов их химического контроля. Эффективной и ритмичной работе способствует рациональное размещение на рабочем месте всех подсобных (мерные колбы, цилиндры, воронки и др.) и вспомогательных (бумажные фильтры, вата, пробки и др.) материалов, которые можно легко, без усилий и лишних движений брать для работы. Сосредоточенность и точность при изготовлении инъекционных лекарственных форм особенно важны.

Отсутствие механических примесей. Полная прозрачность инъекционных растворов достигается правильно проведенной фильтрацией. Для малых количеств растворов применяется фильтрация через бумажный складчатый фильтр с подложенным ватным тампоном. Первые порции фильтрата, в которых могут иметься взвешенные обрывки волокон, возвращаются на фильтр.

Универсальны и более производительны стеклянные фильтры № 3 (размер пор 15-40 мкм), работающие под небольшим разрежением. Для фильтрования непосредственно во флаконы^ пользуются насадками (рис. 22.1). Стеклянные фильтры не обладают адсорбционными свойствами, не изменяют окраску растворов (что имеет место при фильтровании через бумагу, например, производных фенола), легко моются и стерилизуются. При большом объеме изготовления инъекционных растворов фильтрацию проводят на фильтровальных аппаратах со стеклянными фильтрами.

На отсутствие механических загрязнений профильтрованные растворы для инъекций проверяются визуально после розлива их во флаконы, а также после стерилизации. Для визуального контроля чистоты применяется устройство УК-2 (рис. 22.2). УК-2 состоит из корпуса с осветителем (1), отражателем (2) и экраном (3), которые смонтированы на основании со стойками (4). Экран может поворачиваться вокруг вертикальной оси и фиксироваться в необходимом положении. Одна рабочая поверхность экрана окрашена эмалью черного цвета, другая - белого цвета. Источником освещения служат две электрические лампочки мощностью 40-60 Вт. Растворы просматриваются невооруженным глазом. Расстояние глаз контролирующего должно быть в пределах 25 см от флакона. Контролирующий должен иметь остроту зрения 1 (компенсируется очками). В стерильных растворах для инъекций визуально не должно обнаружиться видимых механических загрязнений.

Стабильность инъекционных растворов. Под стабильностью инъекционных растворов понимается их неизменяемость по составу и количеству находящихся в растворе лекарственных веществ в течение установленных сроков хранения. Стабильность инъекционных растворов в первую очередь зависит от качества исходных растворителей и лекарственных веществ. Они должны полностью отвечать требованиям ГФХ или ГОСТ. В ряде случаев предусматривается особая очистка лекарственных веществ, предназначенных для инъекций. Это относится, в частности, к гексаметилентетрамину для инъекций. Повышенной степенью чистоты должны обладать также глюкоза, кальция глюконат, кофеин-бензоат натрия, натрия бензоат, натрия гидрокарбонат, натрия цитрат, эуфиллин, магния сульфат и некоторые другие, т. е. чем выше чистота препаратов, тем более стабильны получаемые из них растворы для инъекций.

Неизменность лекарственных веществ достигается также путем соблюдения оптимальных условий стерилизации (температура, время), использованием допустимых консервантов, позволяющих достигать необходимого эффекта стерилизации при более низкой температуре, и применением стабилизаторов, соответствующих природе лекарственных веществ.

Существенным стабилизирующим фактором в парентеральных растворах является оптимальная концентрация водородных ионов. Говоря об упаковке парентеральных растворов, указывалось, что выщелачивание из стекла растворимых силикатов и их гидролиз ведут к увеличению величины pH. Это влечет за собой разложение многих веществ, в частности выпадение в осадок оснований алкалоидов. Следовательно, для устойчивости солей алкалоидов растворы их должны иметь определенное значение pH. Установлено также, что омыление сложноэфирных групп, которые имеются в молекулах таких соединений, как атропин, кокаин, резко уменьшается со снижением величины pH. Так, при pH 4,5-5,5 растворы этих веществ можно стерилизовать не только текучим паром, но и в автоклаве. Снижения pH для достижения устойчивости требуют также растворы некоторых органопрепаратов (адреналин, инсулин), гликозидов и др.

Оптимальная концентрация водородных ионов в инъекционных растворах достигается путем добавки стабилизаторов, которые предусмотрены в фармакопейных статьях. В разобранных выше случаях для стабилизации лекарственных веществ, представляющих собой соли слабых оснований и сильных кислот, по ГФХ чаще применяется 0,1 н. раствор хлористоводородной кислоты в количестве обычно 10 мл на 1 л стабилизируемого раствора. При этом pH раствора смещается в кислую сторону до pH 3,0. Количества и концентрации растворов хлористоводородной кислоты могут варьировать.

В качестве стабилизаторов применяются и растворы щелочей (едкий натр, гидрокарбонат натрия), которые необходимо вводить в растворы веществ, представляющих собой соли сильных оснований и слабых кислот (кофеин-бензоат натрия, натрия нитрит, натрия тиосульфат и др.). В щелочной среде, создаваемой указанными стабилизаторами, реакция гидролиза этих веществ подавляется.

В ряде случаев для стабилизации легко окисляющихся веществ, например аскорбиновой кислоты, в растворы приходится вводить антиоксиданты - вещества, значительно легче окисляющиеся, чем лекарственные вещества (натрия сульфит, метабисульфит натрия и др.).

Некоторые лекарственные вещества в инъекционных растворах стабилизируются специальными стабилизаторами (например, растворы глюкозы). Сведения о составах стабилизаторов и их количествах приводятся в официнальной таблице стерилизации.

Стерильность и апирогенность. Стерильность инъекционных растворов обеспечивается точным соблюдением асептических условий изготовления, установленного метода стерилизации, температурного режима, времени стерилизации и pH среды.

Методы и условия стерилизации растворов отдельных лекарственных веществ приведены в официнальной сводной таблице стерилизации, включающей свыше 100 наименований инъекционных растворов. Стерилизацию растворов следует проводить не позже, чем через 1-1,5 ч после их изготовления. Стерилизация растворов объемом более 1 л не разрешается. Также не разрешается повторная стерилизация растворов.

Апирогенность инъекционных растворов обеспечивается точным соблюдением правил получения и хранения апирогенной воды (Aqua pro injectionibus) и правил соблюдения условий, в которых происходит изготовление инъекционных растворов.

Специальные требования, предъявляемые к инъекционным растворам. К числу специальных требований, предъявляемых к отдельным группам инъекционных растворов, относятся: изотоничность, изоионичность, изогидричность, вязкость и другие физико-химические и биологические свойства, получаемые при введении в раствор дополнительных веществ (помимо лекарственных).

Из перечисленных требований в аптечной практике чаще приходится решать вопросы, связанные с изотонированием инъекционных растворов. Под изотоническими понимаются растворы с осмотическим давлением, равным осмотическому давлению жидкостей организма: плазмы крови, слезной жидкости, лимфы и др. Осмотическое давление крови и слезной жидкости в норме держится на уровне 7,4 атм. Растворы с меньшим осмотическим давлением называются гипотоническими, с большим - гипертоническими. Изотоничность для инъекционных растворов является весьма важным свойством. Растворы, отклоняющиеся от осмотического давления плазмы крови, вызывают резко выраженное ощущение боли, причем оно тем сильнее, чем резче осмотическая разница. Известно, что при введении анестетиков (в зубоврачебной и хирургической практике) осмотическая травма вызывает после анестезии резкую боль, длящуюся часами. Чувствительные ткани глазного яблока также требуют изотонирования применяемых растворов. Сказанное не имеет отношения к тем случаям, когда с терапевтической целью используют заведомо гипертонические растворы (например, при лечении отечности тканей применяются сильно гипертонические растворы глюкозы).

Изотонические концентрации лекарственных веществ в растворах можно рассчитать разными способами. Наиболее простым способом является расчет по изотоническим эквивалентам натрия хлорида.

Изотоническим эквивалентом вещества по натрия хлориду называется количество натрия хлорида, создающее в тех же условиях осмотическое давление, одинаковое с осмотическим давлением 1 г данного лекарственного вещества. Например, 1 г безводной глюкозы по осмотическому эффекту эквивалентен 0,18 г натрия хлорида. Это означает, что 1 г безводной глюкозы и 0,18 г натрия хлорида изотонируют одинаковые объемы водных растворов.

В ГФХ приводится таблица изотонических эквивалентов по натрия хлориду для сравнительно большого количества лекарственных веществ, которой удобно пользоваться в практической деятельности. Например, при поступлении в аптеку рецепта 22.1 по указанной таблице находят, что эквивалент дикаина по натрия хлориду равен 0,18. Одного натрия хлорида для изотонирования потребовалось бы 0,9. Имеющиеся 0,3 г дикаина эквивалентны: 0,3 х 0,18 = 0,05 г натрия хлорида. Следовательно, натрия хлорида нужно взять 0,9 - 0,05 = 0,85.

22.1.Rp.: Solutionis Dicaini 0,3:100 ml
Natrii chloridi q. s.,
ut fiat solutio isotonica
DS. По 1 мл 3 раза в день подкожно

К физиологическим и кровезамещающим растворам предъявляется ряд требований, кроме изотоничности. Эти растворы являются самой сложной группой инъекционных растворов. Физиологическими называются растворы, которые по составу растворенных веществ способны поддерживать жизнедеятельность клеток и органов и не вызывать существенных сдвигов физиологического равновесия в организме. Растворы, которые по своим свойствам максимально приближаются к плазме человеческой крови, называются кровезамещающими растворами (жидкостями) или кровезаменителями. Физиологические растворы и кровезаменители должны быть прежде всего изотоничными, но, кроме того, они должны быть изоионичными, т. е. содержать хлориды калия, натрия, кальция и магния в соотношении и количествах, типичных для сыворотки крови.

Физиологические растворы и кровезаменители, кроме изотонии и изоионии, должны также отвечать требованиям изогидрии, т. е. иметь pH раствора, равный pH плазмы крови (pH крови 7,36). При этом весьма существенно, чтобы они обладали способностью сохранять концентрацию водородных ионов на одном уровне. В крови это постоянство достигается присутствием буферов (регуляторов реакции) в виде карбонатной системы (гидрокарбонат и карбонат), фосфатной системы (первичный и вторичный фосфаты) и белковых систем, которые по своей природе являются амфолитами и могут, следовательно, удерживать и водородные, и гидроксильные ионы. По аналогии с кровью в кровезаменители и физиологические растворы вводятся соответствующие регуляторы pH среды, в результате чего они становятся изогидричными.

Физиологические растворы и кровезаменители для обеспечения питания клеток и создания необходимого окислительно-восстановительного потенциала обычно содержат глюкозу. Количество ее в крови в норме определяется 3,88-6,105 ммоль/л. Для приближения растворов по их физико-химическим свойствам к плазме крови к ним добавляют некоторые высокомолекулярные соединения. Последние необходимы для уравнения вязкости физиологического раствора с вязкостью крови. Помимо всего перечисленного, кровезамещающие жидкости должны быть лишены токсических и антигенных свойств, а также не понижать свертываемости крови и не вызывать агглютинации эритроцитов.

Частная технология инъекционных растворов

Инъекционные растворы изготавливают в массообъемной концентрации. Отвешивают необходимое количество лекарственного препарата и растворяют в мерной колбе в части воды, после чего раствор доводят водой до требуемого объема. При отсутствии мерной посуды количество воды рассчитывают, пользуясь величиной плотности раствора данной концентрации или коэффициентом увеличения объема (см табл. 8.2).

Растворы веществ, не выдерживающих стерилизацию. Асептическими условиями работы ограничиваются при изготовлении инъекционных растворов лекарственных веществ, которые не выдерживают термической стерилизации (барбамил, мединал, адреналина гидрохлорид, физостигмина салицилат, эуфиллин), или если растворы их сами по себе обладают бактерицидным действием (аминазин, дипразин, гексаметилентетрамин). В изготовлении инъекционных растворов аминазина и дипразина имеются и другие особенности, поскольку эти вещества оказывают местное раздражающее действие и вызывают дерматиты. Работа с ними должна проводиться под тягой, в резиновых перчатках и марлевых повязках; раствор для анализа следует забирать в пипетку только с помощью груши; после работы руки следует мыть без мыла только холодной водой, лучше подкисленной.

В ГФХ имеется общее указание о том, что если необходимо быстро изготовить стерильный раствор из веществ, разлагающихся при нагревании, то лекарственную форму готовят асептически с прибавлением 0,5% фенола, или 0,3% трикрезола, или на насыщенном растворе хлорбутанолгидрата. Такие растворы погружают в воду и нагревают до температуры 80° С. При этой температуре нагревание продолжают не менее 30 мин. Это указание не следует распространять на растворы гексаметилентетрамина, которые являются самостерилизующимися. Растворы, приготовленные асептически, отпускают с этикеткой «Приготовлено асептически».

22.2. Rp.: Solutionis Hexamethylentetramini 40% 100 ml
Sterilisetur!
DS. Внутривенно no 20 мл 3 раза в день

Если мерная посуда отсутствует, то производят расчет. Плотность 40% раствора гексаметилентетрамина - 1,088 г/см3, 100 мл этого раствора весят: 100 х 1,088 = 108,8 мл, следовательно, количество воды составит: 108,8 – 40 = 68,8 мл.

Другой вид расчета: коэффициент увеличения объема гексаметилентетрамина - 0,78, т. е. при растворении 1 г объем его водного раствора увеличивается на 0,78 мл; а при растворении 40 г на 0,78 х 40 = 31,2. Следовательно, воды для инъекции потребуется: 100 - 31,2 = 68,8 мл.

В простерилизованную подставку в асептических условиях отмеривают 68,8 мл воды для инъекций, отвешивают 40 г гексаметилентетрамина для инъекции, растворяют в подставке препарат. Раствор фильтруют в склянку.

Растворы эуфиллина. Эуфиллин является двойной солью очень слабой кислоты (теофиллин) и слабого основания (этилендиамин). По этой причине инъекционные растворы эуфиллина изготавливают на воде, лишенной углекислого газа. Воду кипятят непосредственно после дистилляции в течение 30 мин перед использованием. Флаконы применяются только из нейтрального стекла. Качество препарата должно отвечать дополнительным требованиям ГФХ. Инъекционные растворы эуфиллина: 12% растворы не допускают тепловой стерилизации; прописываемые 2,4% растворы можно стерилизовать текучим паром (100° С) Б течение 30 мин.

Растворы аминазина. Водные растворы аминазина (а также дипразина) легко окисляются даже при кратковременном воздействии света с образованием красноокрашенных продуктов разложения. По этой причине для получения стабильного раствора этих веществ на 1 л раствора добавляют по 1 г безводного натрия сульфита и метабисульфита, 2 г аскорбиновой кислоты и 6 г натрия хлорида. В этом растворе аскорбиновая кислота выполняет роль не лекарственного вещества, а антиоксиданта, поскольку она, окисляясь быстрее аминазина, предохраняет последний от разложения. Натрия хлорид добавляется с целью изотонирования. Лекарственная форма приготавливается в строго асептических условиях без проведения тепловой стерилизации.

Растворы веществ, выдерживающих стерилизацию. Большинство инъекционных растворов изготовляется с применением термической стерилизации. Выбор способа стерилизации зависит от степени термоустойчивости лекарственных веществ.

Растворы натрия гидрокарбоната. Назначаются 3-5% растворы для реанимации (при клинической смерти), при ацидозах, гемолизе крови, для регулирования солевого равновесия и др. Технология раствора натрия гидрокарбоната имеет свои особенности. Для получения прозрачных растворов, устойчивых в течение 1 мес хранения, необходимо: использовать натрия гидрокарбонат повышенной чистоты (х. ч. и ч. д. а. по ГОСТ 4201-79); растворение следует производить в закрытом сосуде при температуре не выше 15-20° С, избегая взбалтывания раствора. После фильтрования и анализа раствор разливают во флаконы из нейтрального стекла (укупорка - резиновые пробки под обкатку металлическими колпачками) стерилизуют текучим паром при 100° С 30 мин или при 119-121° С 8-12 мин. Во избежание разрыва флаконы заполняют раствором только на 2/3 объема; применять растворы следует после полного охлаждения (чтобы растворился выделившийся при стерилизации углекислый газ).

22.3. Rp.: Amidopyrini 2,0
Coffeini-natrii benzoatis 0,8
Novocaini 0,2
Aquae pro injectionibus 20 ml
Sterilisetur!
DS. По 1 мл 3 раза в день внутримышечно

Изготовление сложного инъекционного раствора имеет ряд особенностей. В колбу вносят амидопирин, кофеин-бензоат натрия, новокаин, приливают воду (с учетом КУО, так как количество твердых веществ составляет 15%), закрывают пробкой, погружают в кипящую водяную баню и оставляют, постепенно помешивая, до полного растворения ингредиентов. Затем прозрачный раствор выдерживают в кипящей бане еще в течение 3-5 мин. Раствор фильтруют во флакон для отпуска, герметически укупоривают и стерилизуют текучим паром 30 мин. Перед употреблением раствор проверяют на отсутствие осадка, который иногда образуется вследствие частичного выпадения амидопирина, так как по содержанию амидопирина (1:10) раствор перенасыщен (растворимость амидопирина 1:20). В случае образования осадка раствор подогревают в горячей воде до полного растворения осадка и применяют охлажденным до 36-37° С.

Разберем примеры изготовления инъекционных растворов, технология которых усложнена необходимостью стабилизации и изотонирования.

22.4. Rp.: Securinini nitratis 0,2
Salutionis Acidi hydrochlorici 0,1 N 0,5 ml
Aquae pro injectionibus ad 100 ml
Sterilisetur!
DS. По 1 мл 1 раз в день подкожно

Прописан раствор соли алкалоида, образованный слабым основанием и сильной кислотой. Стабилизатор (раствор хлористоводородной кислоты) предусмотрен прописью. Величина pH в растворе должна быть в пределах 3,5-4,5. Раствор стерилизуют текучим паром в течение 30 мин.

22.5. Rp.: Solutionis Coffeini-natrii benzoatis 10% 50 ml
Sterilisetur!
DS. По 1 мл 2 раза в день подкожно

Прописан раствор вещества, являющегося солью сильного основания и слабой кислоты. По указанию ГФХ в качестве стабилизатора добавляется 0,1 н. раствор натра едкого из расчета 4 мл на 1 л раствора. В данном случае добавляют 0,2 мл раствора натра едкого, pH 6,8-8,0. Раствор стерилизуют текучим паром в течение 30 мин.

22.6. Rp.: Solutionis Acidi ascorbinici 5% 25 ml
Sterilisetur!
DS. По 1 мл 2 раза в день внутримышечно

Прописан раствор легко окисляющегося вещества. Для стабилизации раствор изготавливают с антиоксидантом (натрия метабисульфит 0,1% или натрия сульфит 0,2%). По той же причине применяют воду свежепрокипяченную и насыщенную углекислым газом. Следует учитывать, что растворы аскорбиновой кислоты вследствие сильно кислой реакции среды при введении вызывают болевое ощущение. Для нейтрализации среды в состав раствора вводят натрия гидрокарбонат по стехиометрическому расчету. Образовавшийся натрия аскорбинат полностью сохраняет лечебные свойства аскорбиновой кислоты. При изготовлении лекарства руководствуются технологией и расчетами, приведенными в ГФХ ст. 7 “Solutio Acidi ascorbinici 5% pro injectionibus”. Стерилизуют текучим паром 15 мин.

22.7. Rp.: Solutionis Glucosi 40% 100 ml
Sterilisetur!
DS. По 20 мл 3 раза в день внутривенно

Широко и в разных концентрациях (от 5 до 40%) в назначаемых растворах глюкозы применяют стабилизатор, состоящий из смеси 0,26 г натрия хлорида и 5 мл 0,1 н. раствора хлористоводородной кислоты на 1 л раствора глюкозы. Для ускорения работы рекомендуется применять заранее изготовленный раствор стабилизатора, полученный по прописи: 5,2 г натрия хлорида, 4,4 мл разведенной хлористоводородной кислоты (точно 8,3%) и дистиллированной воды до 1 л. Раствор стабилизатора к растворам глюкозы добавляют в количестве 5% (независимо от концентрации глюкозы). Хлористоводородная кислота в этом стабилизаторе, нейтрализуя щелочность стекла, уменьшает опасность карамелизации глюкозы. Натрия хлорид, как считают, в месте присоединения альдегидной группы образует комплексные соединения и тем самым предупреждаются окислительно-восстановительные процессы в растворе. Стабилизированный раствор глюкозы стерилизуют текучим паром в течение 60 мин или при 119-121° С - 8 мин (при объеме до 100 мл). Растворы глюкозы являются хорошей питательной средой для микроорганизмов и обычно сильно загрязнены ими, в связи с чем необходим удлиненный срок стерилизации. Желтоватые растворы глюкозы до стерилизации необходимо взболтать с небольшим количеством активированного угля и профильтровать. При приготовлении инъекционных растворов глюкозы нужно учитывать, что она содержит кристаллизационную воду и может содержать гигроскопическую воду, поэтому ее следует брать соответственно больше, пользуясь формулой расчета, приведенной в ГФХ (ст. 311):

где а - количество безводной глюкозы, указанное в рецепте; б - процентное содержание воды в глюкозе по анализу. В нашем случае: а = 40 г; б = 10,5%; Р = 44,7 г.

Объем, занимаемый глюкозой водной, при растворении составляет 30,8 мл (КУО = 0,69).

Количество стабилизатора (раствор Вейбеля) - 5 мл. Количество воды для раствора - 100 - (5 + 30,8) = 64,2 мл.

Технология раствора: в асептических условиях в стерильной подставке растворяют 44,7 г глюкозы в 64,2 мл стерильной воды для инъекций. Раствор фильтруют в стерильный флакон, добавляют 5 мл стерильного раствора Вейбеля. Стерилизуют текучим паром в течение 60 мин.

22.8. Rp.: Olei camphorati 20% 50 ml
Sterilisetur!
DS. По 2 мл подкожно

Прописан масляный инъекционный раствор. Камфору растворяют в большей части теплого (40-45° С) стерилизованного персикового (абрикосового, миндального) масла. Фильтруют через сухой фильтр в сухую мерную колбу и доводят маслом до метки, промывая ям фильтр. После этого содержимое колбы переводят в стерильный флакон с притертой пробкой. Стерилизацию готового раствора проводят текучим паром в течение часа. Эту операцию необходимо рассматривать как гарантийную, поскольку обеспложивание среды было уже достигнуто при стерилизации масла.

Плазмозамещающие растворы. Плазмозамещающими называются растворы, предназначенные для замещения плазмы в случае острых кровопотерь, при шоке различного происхождения, нарушениях микроциркуляции, интоксикации и других процессах, связанных с нарушением гемодинамики. Их называют кровезамещающими, если такие растворы содержат форменные элементы крови (добавляется кровь). По своему назначению и функциональным свойствам плазмозамещающие растворы делятся, в основном, на группы: 1) растворы, регулирующие водно-солевое и кислотное равновесие; 2) дезинтоксикационные растворы и 3) гемодинамические растворы.

Большая часть плазмозамещающих растворов изготавливается в промышленных условиях на основе декстрана, поливинилпирролидона и поливинилового спирта и других высокомолекулярных соединений. Однако некоторые солевые растворы еще продолжают изготавливаться в аптечных условиях, преимущественно в аптеках, обслуживающих лечебные учреждения.

Изотонический раствор натрия хлорида. Содержанием натрия хлорида в значительной степени обеспечивается постоянство осмотического давления крови (7,4 атм). При значительном дефиците натрия хлорида могут развиваться спазмы гладкой мускулатуры, нарушения функции нервной системы и кровообращения и наблюдаться сгущение крови в связи с переходом воды из сосудистого русла в ткани. Водный раствор натрия хлорида, содержащего 0,9% этого вещества, имеет такое же осмотическое давление, что и кровь, в связи с чем его раствор в указанной концентрации является изотоничным по отношению к плазме крови человека. Изотонический раствор натрия хлорида часто называют «физиологическим», что неверно, поскольку он не содержит других ионов, помимо Na+ и Сl- , необходимых для сохранения физиологического состояния тканей организма. Основное применение изотонический раствор натрия хлорида находит в случае обезвоживания организма и интоксикации при различных заболеваниях (острая дизентерия, пищевая интоксикация и др.).

Изотонический раствор натрия хлорида часто является растворителем для инъекционных растворов лекарственных веществ, нуждающихся в изотонировании.

22.9. Rp.: Solutionis Natrii chloridi
isotonicae pro injectionibus 100 ml
DS. Ввести капельным методом внутривенно

Раствор изготавливают из натрия хлорида высокой чистоты (х. ч. или ч. д. а.) предварительно простерилизованного сухим жаром при 180° С в течение 2 ч на апирогенной воде. Небольшие количества (100, 200 мл) раствора удобно приготавливать из специальных таблеток натрия хлорида по 0,9 г (таблетки-навески). Стерилизуют при 1,19-1,21° С в течение 15-20 мин.

Физиологический раствор Рингера-Локка. Этот раствор изготавливают по следующей прописи:

Натрия хлорида 9,0
Натрия гидрокарбоната 0,2
Калия хлорида 0,2
Кальция хлорида 0,2
Глюкозы 1,0
Воды для инъекций до 1000 мл

Раствор Рингера-Локка обогащен ионами К+ и Са++, содержит углекислый газ, а также энергетический источник - глюкозу. Углекислый газ, поступая в кровь, возбуждает дыхательный и сосудодвигательный центры. Особенностью изготовления этого раствора является раздельное приготовление стерильного раствора натрия гидрокарбоната и стерильного раствора остальных ингредиентов. Растворы сливаются перед введением их больному. Раздельное изготовление растворов предупреждает образование осадка кальция карбоната. Изготовление растворов натрия гидрокарбоната было описано выше. Для его изготовления можно взять 500 мл апирогенной воды, остальными 500 мл воды растворяют натрия хлорид, глюкозу и хлориды калия и кальция (последний берут в форме концентрата каплями). Подготовленные растворы стерилизуют текучим паром.

Отпуск инъекционных лекарственных форм. Предупреждение ошибок

Ядовитые вещества, входящие в состав инъекционных растворов, отвешиваются рецептаром-контролером в присутствии фармацевта, который должен убедиться в соответствии и правильности массы вещества, и передаются ему для немедленного изготовления раствора.

Флаконы с подготовленными для стерилизации растворами после укупорки обвязывают пергаментной бумагой, на которой фармацевт должен сделать надпись черным графитным карандашом (не чернилами) о входящих ингредиентах и их концентрации и лично расписаться. Возможны другие виды маркировки (например, металлические жетоны). На флаконы с растворами после стерилизации фармацевт наклеивает номер, а в аптеках лечебных учреждений - этикетки и передает вместе с рецептом технологу-провизору для проверки и последующего оформления.

Все инъекционные растворы до и после стерилизации должны быть проверены на отсутствие механических включений и подвергнуты полному химическому контролю, включая определение подлинности, количественное содержание лекарственных веществ, pH среды, изотонирующие и стабилизирующие (только до стерилизации) вещества. Растворы для инъекций, изготовленные по индивидуальным рецептам или требованиям лечебно-профилактических учреждений, химически проверяются выборочно в установленном порядке.

Контроль путем опроса фармацевта проводят немедленно после изготовления инъекционных растворов. Помимо контроля растворов, технолог-провизор должен проверить температуру, при которой проводилась стерилизация, и продолжительность ее с учетом свойств стерилизуемого вещества. Технолог-провизор оформляет изготовленный инъекционный раствор к отпуску после сличения надписей на рецепте, сигнатуре и флаконе.

Идея введения лекарственных веществ через кожный покров принадлежит врачу Фуркруа (1785), который с помощью скарифика- торов делал на коже насечки и в полученные ранки втирал лекарственные вещества. Впервые подкожное впрыскивание лекарственных растворов было осуществлено в начале 1851 г. русским врачом Владикавказского военного госпиталя. Он использовал часть баро- метрической трубки с поршнем, на свободном конце которой укреплялся серебряный наконечник, вытянутый в иглу. В 1852 г. чешским врачом Правацем был предложен шприц современной конструкции.

25.1. ЛЕКАРСТВЕННЫЕ ФОРМЫ

Инъекционные лекарственные формы (от лат. injectio - впрыскивание) - стерильные водные и неводные растворы, суспензии, эмульсии и сухие твердые вещества (порошки, пористые массы и таблетки), которые растворяют стерильной водой непосредственно перед введением в организм при помощи шприца с нарушением целости кожных покровов или слизистых оболочек.

Инъекционные растворы объемом 100 мл и более относятся к инфузионным (от лат. infusio - вливание).

Преимущества инъекционного способа введения:

1. Быстрота действия (иногда через несколько секунд).

2. Возможность введения лекарственных препаратов больному, находящемуся в бессознательном состоянии.

3. 100% биодоступность, так как лекарственные вещества вводятся, минуя желудочно-кишечный тракт, печень - органы, способные изменять и разрушать лекарственные вещества, для которых невозможны другие способы введения (препараты инсулина, антибиотики, гормоны и др.).

4. Локализация действия лекарственных веществ в зоне укола (например, анестезия местная, проводниковая, инфильтрационная);

5. Отсутствие ощущений, связанных с неприятным запахом и вкусом лекарственных препаратов.

Недостатки инъекционного способа введения:

1. Нарушаются защитные барьеры организма, возникает серьезная опасность внесения инфекции.

2. Возникает опасность эмболии вследствие попадания твердых частиц или пузырьков воздуха, возможен летальный исход.

3. Введение инфузионных растворов непосредственно в ткани может вызвать сдвиги осмотического давления, рН, возникает резкая боль, жжение, иногда лихорадочные явления.

4. Инъекционный способ введения требует высокой квалификации медицинского персонала. Неумелое введение приводит к повреждению нервных окончаний, стенок кровеносных сосудов или другим опасным последствиям.

5. Высокая стоимость - всегда выше энтеральных лекарственных форм одного и того же наименования.

Виды инъекционных манипуляций

В зависимости от места и глубины введения лекарственных препаратов применяют инъекции следующих видов: внутрикожные, подкожные, внутримышечные, внутрисосудистые, спинномозговые, внутричерепные, внутрибрюшинные, внутриплевральные, внутрисуставные, инъекции в сердечную мышцу и др.

А. Внутривенные вливания

Внутривенные вливания осуществляют в поверхностные вены области локтевого или коленного сгиба. Внутривенные вливания обеспечивает мгновенное наступление действия лекарства и практически 100% биодоступность.

Следует знать, что внутривенные вливания могут сопровождаться серьезными осложнениями: тромбообразованием, воспалением вен с последующей тромбоэмболией легочной артерии.

Причинами таких осложнений могут быть:

Некачественное внутривенное вливание (попадание пузырька газа или кусочка резины, пробки в вену);

Некачественный раствор препарата (высокое значение рН раствора, механические включения, присутствующие в растворе);

Выбор слишком маленькой вены для объема введенного раствора.

Внутривенные вливания осуществляют с помощью трансфузионных систем (рис. 25.1).

Рис. 25.1. Внутривенное вливание и трансфузионные системы

Б. Внутримышечные инъекции

Основные места для инъекций: дельтовидная мышца руки, большая ягодичная и латеральная мышцы (рис. 25.2). Внутримышечный путь введения считается менее опасным и более легким в исполнении, чем внутривенный. Действие препарата наступает несколько позже в сравнении с внутривенным, но быстрее подкожного. Процедура наиболее болезненна в сравнении с другими.

Рис. 25.2. Внутримышечные инъекции

Для внутримышечных инъекций необходим правильный выбор длины иглы. Длина иглы должна быть больше толщины жировой прослойки пациента.

Максимальный объем вводимого раствора - 2,0 мл в мышцы руки или бедра и не более 5,0 мл - в ягодицу. Место инъекции должно быть в максимально возможной степени удалено от главных нервов и кровеносных сосудов, чтобы избежать повреждения нервных окончаний и случайного внутривенного введения.

Для замедления (пролонгирования) действия препарата применяют его масляные растворы или эмульсии.

В. Внутрикожные (интрадермальные) инъекции

Инъекции делаются в основном в область предплечья. Лекарственные вещества вводят в пространство между эпидермисом и дермой на глубину 1-5 мм (рис. 25.3). Максимальный объем вводимого раствора - 0,1 мл.

Чаще всего этим методом вводят диагностические, иммунологические и косметологические препараты. Используются тонкие иглы, специальные шприцы.

Г. Подкожные инъекции

Подкожное введение - универсальный метод введения лекарственных средств как скоропомощного, так и пролонгированного действия. Инъекцию делают во внутреннюю поверхность руки, бедра, нижнюю часть живота. Максимальное количество вводимого раствора - 2 мл. Иногда при так называемых капельных инъекциях под кожу вводят, не вынимая иглы, в течение 30 мин до 500 мл жидкости (рис. 25.4).

Рис. 25.3. Внутрикожные инъекции

Рис. 25.4. Подкожные инъекции

Фармакокинетика подкожного введения примерно равна внутримышечному, с некоторым замедлением.

Для ускорения действия лекарств применяют 2 способа:

Перед введением массируют кожу в месте укола;

Вводят одновременно вазодилататоры, увеличивающие всасываемость веществ.

Множество лекарственных средств назначают подкожно. Наиболее важными являются гепарины и инсулины. Для снижения объема инъекции важно, чтобы растворимость субстанций была максимальной.

Пролонгирование действия лекарств, например морфина, инсулина, гепарина, достигается или введением препарата в виде растворов в масле, суспензий, эмульсий, или установкой под кожей специальных устройств, содержащих микрокапсулы препарата в сетке-дозаторе (рис. 25.5).

Подкожная ткань - идеальный участок для внедрения таких устройств. Внедрение часто требует хирургической процедуры. Материал устройства биологически совместим с тканями. Примеры вживляемых устройств: Norplant ?, Oreton ?, Percorten ? и осмотически управляемый мини-насос (Alzet ?), который может выделять молекулы препарата в течение 21 дня.

В последние годы предложен безболезненный безыгольный метод введения лекарственного препарата. Он основан на способнос- ти струи вещества с большой кинетической энергией преодолевать сопротивление и проникать в ткани. При безыгольной инъекции раствор лекарственного вещества вводится в ткани очень тонкой струей (диаметром в десятые и сотые доли миллиметра) под высоким давлением (до 300 кгс/см). Способ такого введения лекарственных веществ по сравнению с обычными инъекциями с помощью иглы имеет преимущества: безболезненность инъекций, быстрое наступление эффекта, уменьшение требуемой дозы, невозможность передачи «шприцевых инфекций», более редкая стерилизация инъектора, увеличение количества инъекций, проводимых в единицу времени (до 1000 инъекций в час).

Рис. 25.5. Подкожные устройства-дозаторы (увеличено)

Шприцы для подкожных и внутримышечных инъекций

По способу крепления иглы все шприцы подразделяют на 3 вида: Slip-Tip?, эксцентриковый Slip-Tips? и Luer-Lok?. По конструкции шприцы разделяют на 2 класса:

Двухкомпонентные (корпус и плунжер) (рис. 25.6);

Трехкомпонентные (корпус, плунжер и резиновый уплотнитель поршня). Резиновый уплотнитель позволяет снизить силу трения частей шприца друг о друга при введении лекарственных препаратов. Ход поршня стал плавным, а укол - менее болезненным (рис. 25.7).

Рис. 25.6. Шприцы Луер двух- и трехкомпонентные

Рис. 25.7. Игла, 5 типоразмеров

Рис. 25.8. Шприц Луер, оснащенный мембранным фильтром для дополнительной фильтрации раствора. Фильтродержатель. Фильтрующая мембрана (увеличено)

25.2. РАСТВОРИТЕЛИ, ЛЕКАРСТВЕННЫЕ СРЕДСТВА И ВСПОМОГАТЕЛЬНЫЕ МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ ДЛЯ ИЗГОТОВЛЕНИЯ ИНЪЕКЦИОННЫХ РАСТВОРОВ

Для изготовления инъекционных растворов используют: лекарственные средства, растворители, вспомогательные вещества, тару и упаковку.

Качество и квалификация всех перечисленных компонентов должны быть указаны в нормативной документации (ГФ, ФС, ФСП), утвержденной МЗ РФ.

А. Растворители

Основные требования, предъявляемые к растворителям

В качестве растворителей применяют: воду для инъекций, жирные масла и этилолеат. В качестве комплексного растворителя могут быть использованы этанол, глицерин, пропиленгликоль, ПЭО-400, спирт бензиловый, бензилбензоат или их смеси.

1. Вода для инъекций. Для изготовления растворов для инъекций используют воду для инъекций, которая должна выдерживать испытания на воду очищенную, а также быть апирогенной (см. главу 11). Воду для инъекций получают в асептических условиях с учетом требований приказа Минздрава? 309.

2. Неводные растворители

2.1. Масла растительные (Olea pinguia).

Наиболее широко используются масла персиковое, оливковое, касторовое.

Масло для инъекций должно быть рафинированным, дезодорированным, иметь кислотное число менее 2,5, перекисное менее 10,0 (табл. 25.1).

К недостаткам масляных растворов следует отнести их высокую вязкость, болезненность инъекций, трудное рассасывание масла и возможность образования гранулем в месте введения.

Для уменьшения вязкости в некоторых случаях добавляют этиловый или этилптиколевый эфир.

Растворимость некоторых веществ в маслах увеличивают путем добавления сорастворителей (спирт бензиловый, бензилбензоат и др.). В РФ растительные масла применяются для приготовления инъекционных растворов камфоры, дезоксикортикостерона ацетата, диэтилстильбэстрола пропионата, ретинола ацетата, синэстрола (см. табл. 25.1).

Таблица 25.1. Примеры использования масел растительных в инъекционных растворах

2.2. Этилолеат (Ethylii oleas) - сложный эфир ненасыщенных жирных кислот с этанолом:

СН 3 - (СН 2) 3 - СН = СН - (СН 2)7 - СО - О - С 2 Н 5 .

В сравнении с маслами обладает большей растворяющей способностью, меньшей вязкостью, имеет постоянный химический состав, легко проникает в ткани, хорошо рассасывается, сохраняет однородность при пониженной температуре. В этилолеате хорошо растворяются витамины, гормональные вещества.

2.3. Этанол (С 2 Н 5 ОН) (Spiritus aethylicus). Применяют для улучшения растворимости труднорастворимых в воде соединений и используют как антисептик и сорастворитель при изготовлении растворов сердечных гликозидов: конваллятоксина, строфантина К. Применяют для улучшения растворимости веществ путем их растворения в этаноле, смешения с маслом с последующей отгонкой (онкопрепараты).

2.4. Глицерин улучшает растворимость в воде сердечных гликози- дов. В составе трехкомпонентной системы «вода-этанол-глицерин» он используется для получения раствора целанида и лантозида. В качестве сорастворителя глицерин используют при изготовлении инъекционных растворов мезатона, фетанола, дибазола и др.

2.5. Спирт бензиловый (С 6 Н 5 - СН 2 ОН) (Spiritus benzylicus) используется в качестве сорастворителя в концентрации 1-10% при изготовлении масляных растворов.

2.6. Пропиленгликоль (СН 2 - СНОН - СН 2 ОН) (Propylenglycolum) является хорошим растворителем для сульфаниламидов, барбитуратов, антибиотиков, витаминов А и D, оснований алкалоидов и других лекарственных веществ.

2.7. Бензилбензоат (Benzylii benzoas) - бензиловый эфир бензойной кислоты. Бензилбензоат значительно увеличивает растворимость в маслах некоторых труднорастворимых веществ, главным образом стероидных гормонов. Кроме того, бензилбензоат предотвращает кристаллизацию веществ из масел в процессе хранения.

2.8. Смешанные растворители (сорастворители) обладают большей растворяющей способностью, чем каждый растворитель в отдельности. В настоящее время сорастворители широко используют для получения инъекционных растворов веществ, труднорастворимых в индивидуальных растворителях (гормонов, витаминов, антибиотиков, барбитуратов и др.) (табл.25.2).

Таблица 25.2. Инъекционные растворы, содержащие в составе сораство- ритель

Наименование ЛС

Применяемый сорастворитель

Кармустин

Спирт 10%

Хлордиазепоксид

Пропиленгликоль 20%

Циклоспорин

Спирт 33%

Диазепам

Дигоксин

Пропиленгликоль 40%, спирт 10%

Этомидат

Пропиленгликоль 35%

Кеторлак

Спирт 10%

Лоразепам

ПЭГ-400 18%, пропиленгликоль 82%

Мультивитамины

Пропиленгликоль 30%

Нитроглицерин

Пропиленгликоль 0,5%, спирт 70%

Фенобарбитал натрия

Пропиленгликоль 40%, спирт 10%

Секобарбитал натрия

Пропиленгликоль 50%

Тенопсид

Спирт 42,7%, ДМА 6%

Триетоприм сульфат

Пропиленгликоль 40%, спирт 10%

Б. Лекарственные средства

Лекарственные средства (субстанции), используемые для изготовления инъекционных растворов, должны отвечать требованиям ГФ, ФС, ВФС. Некоторые вещества подвергают дополнительной очистке и выпускают повышенной чистоты, квалификации «годен для инъекций» (глюкоза, желатин, пенициллин и др.).

В частности, в глюкозе и желатине (благоприятные среды для размножения микроорганизмов) могут содержаться пирогенные вещества. Поэтому для них определяют тест-дозу на пирогенность в соответствии со статьей ГФ «Проверка пирогенности». Глюкоза не должна давать пирогенный эффект при внутривенном введении 5% раствора из расчета 10 мг/кг массы кролика, желатин - 10% раствора. Бензилпенициллина калиевую соль также проверяют на пирогенность (тест-доза не должна превышать 5000 ЕД в 1 мл воды на 1 кг массы кролика) и испытывают на токсичность.

Пригодность некоторых лекарственных веществ для инъекционных растворов определяют на основании дополнительных иссле- дований на чистоту. Кальция хлорид проверяют на растворимость в этаноле (органические примеси) и содержание железа; гексаметилентетраамин - на отсутствие аминов, солей аммония и хлороформа; кофеин-бензоата натрия - на отсутствие органических примесей (раствор не должен мутнеть или выделять осадок при нагревании в течение 30 мин). Магния сульфат для инъекций не должен содержать марганца и других веществ, что отмечено в нормативной документации.

Натрия гидрокарбонат квалификации х.ч., ч.д.а., «годен для инъекций», отвечающий требованиям ГОСТа 4201, должен выдерживать дополнительное требование на прозрачность и бесцветность 5% рас- твора. Ионов кальция и магния должно быть не более 0,05%, иначе в процессе термической стерилизации раствора будет появляться опалесценция карбонатов этих катионов.

Эуфиллин для инъекций должен содержать повышенное количество этилендиамина (18-22%) как стабилизатор этого вещества вместо 14-18% при использовании его для пероральных растворов и выдерживать дополнительное испытание на растворимость.

Натрия хлорид (х.ч.), выпускаемый по ГОСТу 4233, должен соответствовать требованиям ГФ, калия хлорид (х.ч.) должен отвечать требованиям ГОСТа 4234 и ГФ. Натрия ацетат квалификации ч.д.а. должен отвечать требованиям ГОСТа 199.

Натрия бензоат не должен содержать более 0,0075% железа.

Тиамина бромид для инъекций должен выдерживать дополнительное испытание на прозрачность и бесцветность раствора.

Лекарственные вещества, используемые для приготовления инъекционных растворов, хранят в отдельном шкафу, в стерильных небольших штангласах, закрытых притертыми пробками. Штангласы

перед каждым заполнением лекарственными веществами моют и стерилизуют в соответствии с приказом Минздрава. В. Вспомогательные вещества

При изготовлении лекарственных средств для парентерального применения могут быть добавлены консерванты, антиоксиданты, стабилизаторы, эмульгаторы, солюбилизаторы и другие вспомогательные вещества, указанные в частных статьях.

В качестве вспомогательных веществ - ингибиторов физикохимических процессов, препятствующих гидролизу и окислению лекарственных средств, используют: аскорбиновую, хлористо-водородную, винную, лимонную, уксусную кислоты, натрия карбонат, натрия бикарбонат, натр едкий, натрия или калия сульфит, бисульфит или метабисульфит, натрия тиосульфат, натрия цитрат, натрия фосфат одно- и двузамещенный, натрия хлорид, метиловый эфир оксибензойной кислоты, пропиловый эфир оксибензойной кислоты, ронгалит, динатриевую соль этилендиаминтетрауксусной кислоты, спирт поливиниловый, хлоробутанол, крезол, фенол и др.

Количество добавляемых вспомогательных веществ, если нет других указаний в частных статьях, не должно превышать следующих концентраций: для веществ, подобных хлорбутанолу, крезолу, фенолу, - до 0,5%; для сернистого ангидрида или эквивалентных количеств сульфита, бисульфита или метабисульфита калия или натрия - до 0,2%.

Консерванты (табл. 25.3) применяют в многодозовых лекарственных средствах для парентерального применения, а также в однодозовых препаратах в соответствии с требованиями частных статей.

Лекарственные средства для внутриполостных, внутрисердечных, внутриглазных или других инъекций, имеющих доступ к спинномозговой жидкости, а также при разовой дозе, превышающей 15 мл, не должны содержать консервантов.

Правило 1

Приказ? 214 требует указания концентрации и объема (или массы) изотонирующих и стабилизирующих веществ, добавленных в растворы для инъекций и инфузий, не только в паспортах, но и на рецептах.

Г. Тара и упаковка

Растворы для инъекций упаковывают во флаконы, укупоривают пробками и закатывают колпачками.

Таблица 25.3. Вспомогательные вещества и их концентрация в растворах для инъекций

Сосуды и укупорочные средства должны обеспечивать герметичность, быть индифферентными к содержимому, сохранять его стабильность при стерилизации, хранении и транспортировании. Марки стекла и других укупорочных средств (резины, пластмассы) должны быть указаны в частных статьях. Сосуды изготавливают из материалов, не затрудняющих визуальный контроль содержимого.

Рис. 25.9. Бутылка для крови, трансфузионных и инфузионных препаратов, ГОСТ 10782

Бутылки для инфузионных растворов и кровезаменителей с гладким горлом (рис. 25.9) изготавливаются из медицинского стекла марки МТО. Они предназначены для расфасовки и хранения крови, кровезаменителей, инфузионных и трансфузионных растворов. Емкость - 100, 250 и 450 мл. Внутренняя поверхность бутылок обработана для обеспечения химической стойкости. Бутылки с внутренним химически стойким покрытием нельзя использовать повторно после хранения в них препаратов в течение гарантийного срока годности. Гарантийный срок хранения - 1 год с даты изготовления.

В настоящее время широко применяются бутылки из полиэтилена или полипропилена (рис. 25.10). Преимуществом данной тары явля- ется совместимость с любыми растворами и возможность стерилизации паром в стандартных условиях.

Бутылки укупоривают пробками резиновыми для бутылок с кровью, кровезаменителями и инфузионными растворами (рис. 25.11). Материал пробки должен быть достаточно прочным и эластичным, чтобы обеспечивать отбор содержимого без удаления пробки, отделения ее частиц и герметизацию сосуда после удаления иглы.

Рис. 25.10. Бутылки из полиэтилена высокого давления для инфузионных препаратов

Для фиксации пробки на нее и горло бутылки устанавливают алюминиевый колпачок (рис. 25.12), который завальцовывают. Одновременно с обеспечением плотной укупорки достигается контроль вскрытия инъекционных растворов. Колпачки изготовлены из алюминиевой фольги толщиной 0,2 мм. В процессе производства обязательно осуществляют обезжиривание после штамповки, химическую обработку и 100% выходной контроль.

25.3. ВЗАИМНАЯ НЕСОВМЕСТИ МОСТЬ ИНЪЕКЦИОННЫХ РАСТВОРОВ

Рис. 25.11. Пробки резиновые 4Ц для укупоривания бутылок с кровью, кровезаменителями и инфузионными растворами

Несовместимость - явление утраты качественных и количественных характеристик препарата в результате взаимодействия с другим препаратом или вспомогательными веществами.

По современным данным, за время одной госпитализации больной получает в среднем 8-14 различных препаратов, большинство из которых многокомпонентные. При этом весьма вероятны реакции взаимодействия препаратов друг с другом, происходящие при смешивании в одном шприце или в организме больного. По данным печати, более 20% лекарственных осложнений связаны с взаимодействием препаратов в процессе политерапии.

Работник аптечного или лечебно-профилактического учреждения обязан своевременно выявлять несовместимые сочетания лекарственных средств. Если факт несовместимости неизвестен, фармацевт обязан предвидеть и предотвращать данные явления. Для того чтобы предвидеть несовместимые сочетания, фармацевт должен знать фармацевтическую химию, чтобы прогнозировать возможные реакции.

Рис. 25.12. Колпачки алюминиевые

Наиболее часто происходят реакции гидролиза (эфиров, амидов, лактамов) и окисления (катехинов, фенолов, непредельных соединений), осаждение слабых электролитов или нейтральных, гидрофобных оснований в результате изменения рН концентрации сорастворителей, ПАВ.

Образование осадка при изменении рН определяет стабильность растворов практически всех лекарственных веществ. Например, раствор пенициллина содержит буферный раствор калиевой соли лимонной кислоты в области рН 6,5. Раствор стабилен в течение 24 ч при таком рН; однако при смешивании с раствором препарата кислотного характера рН изменяется, пенициллин теряет активность в течение 1 ч.

Правило 2

Растворы для внутривенных вливаний не рекомендуются смешивать с лекарственными препаратами. Категорически запрещается смешивание любых препаратов со следующими внутривенными растворами:

Плазмозаменители;

Гидролизаты белка;

Растворы аминокислот;

Кровь, плазма и другие препараты крови;

Гидрокарбонат натрия;

Жировая эмульсия.

Эти вливания непостоянны по своей природе, и введение препаратов может вызвать неблагоприятные реакции коагуляции, гидро- лиза с образованием потенциально опасных продуктов.

При смешивании фармацевт должен помнить, что растворимость слабой кислоты или основания зависит от рН: амины (дофамин, адреналин, морфин) являются основаниями и растворимы в кислой среде, тогда как карбоксильные и другие кислоты (пенициллины, цефалоспорины, 5-фтороурацил) растворимы в щелочной среде. Смешивание в одном флаконе веществ, обладающих свойствами кислоты и основания, всегда приводит к реакции взаимодействия.

Правило 3

Запрещается смешивать в одном флаконе лекарственные средства с различающимся рКа.

Возможно образование осадка в результате снижения концентрации сорастворителей или ПАВ.

Особое внимание фармацевт должен уделять совместимости растворов неэлектролитов (типа дигоксина, фенитоина и бензодиазепина), которые возможны только в неводном растворителе. Если к раствору препарата добавить водный раствор другого препарата, произойдет осаждение крайне токсичных соединений.

Большое внимание необходимо уделять возможной адсорбции препарата. В частности, растворы неполярных веществ, особенно низ- кой концентрации, способны адсорбироваться полярными стенками поливинилхлоридных сосудов или систем для переливания крови.

Классический пример - нитроглицерин. Нитроглицерин плохо растворяется в воде - менее 0,1%. Если водный раствор нитроглицерина поместить в ПВХ-мешок, то потери вещества будут зна- чительными в результате сорбции препарата поливинилхлоридом. Это явление наблюдается для растворов витамина А (ретинола ацетат), варфарина, метгекситала, тербуталина, лоразепама и инсулина. Оптимальным материалом для изготовления флаконов, в которые будут помещены данные препараты, является стекло.

Следует учитывать и взаимодействие лекарственных средств с антиокислителями. Некоторые инъекционные растворы содержат в составе антиокислителя натрия сульфид. Фармацевту нужно помнить, что сульфиды реагируют с другими лекарствами, например со фторурацилом, тиамина хлоридом.

Фармацевту следует знать, что большинство одновалентных катионов совместимо. Однако двухвалентные катионы, подобно кальцию и магнию, могут осаждаться в присутствии бикарбоната, солей лимонной кислоты и фосфата. Кальций образует комплексы с тетрациклинами, приводящие к его инактивации.

25.4. СТАБИЛИЗАЦИЯ ИНЪЕКЦИОННЫХ РАСТВОРОВ

Стабильность - свойство препарата сохранять качественные и количественные характеристики при хранении в течение срока годности и при введении в организм больного.

Существует 3 фактора, определяющие стабильность инъекционных растворов:

1. Химическая стабильность - способность лекарственного препарата противостоять 4 реакциям разрушения:

Гидролизу;

Окислению;

Фотолизису;

Другим, например рацемизации.

2. Физическая стабильность - способность сохранить физические характеристики, включая цвет, прозрачность, растворимость.

3. Микробиологическая стабильность - способность поддерживать стерильность или определенный ее уровень.

Утрата стабильности происходит из-за воздействия неблагоприятных факторов окружающей среды и зависит от:

Физико-химических свойств лекарственных веществ;

Значения рН раствора;

Присутствия ионов тяжелых металлов, попадающих в раствор из лекарственных веществ, воды или стекла;

Кислорода, содержащегося в воде и в воздухе над раствором;

Температуры (в том числе при стерилизации).

По сравнению с другими изготовляемыми в аптеках лекарственными формами (растворы для внутреннего и наружного применения, порошки, мази и т.д.), для которых лишь на отдельные препараты имеются частные статьи в ГФ Х, ФС, ВФС, составы всех растворов для инъекций, а также способы обеспечения их стерильности и стабильности регламентированы. Поэтому обязательным до приготовления раствора для инъекций является ознакомление с вышеуказанной документацией.

Правило 4

Изготавливать растворы для инъекций без имеющихся утвержденных указаний о составе, технологии приготовления и стерилизации запрещено.

Технология стабилизации растворов для инъекций

Выбор стабилизатора в первую очередь зависит от химической природы веществ, которые ориентировочно можно разделить на 3 группы:

1. Растворы солей слабых оснований и сильных кислот.

2. Растворы солей сильных оснований и слабых кислот.

3. Растворы легкоокисляющихся веществ.

25.4.1. Стабилизация растворов солей слабых оснований и сильных кислот (растворы солей алкалоидов и синтетических азотистых оснований)

Для стабилизации растворов этих веществ рекомендуется снижение рН раствора.

Увеличение рН раствора приводит к следующим взаимодействиям:

- осаждению оснований из солей стрихнина нитрата, папаверина гидрохлорида, дибазола, новокаина, констатируемому по замасливанию стенок сосуда;

- изменению окраски растворов вследствие их разрушения, так как соли всегда стабильнее основания; например, раствор мор- фина желтеет, апоморфина - зеленеет, адреналина - розовеет, дротаверина - темнеет.

Прибавление к этим растворам свободной кислоты, т.е. избытка ионов ОН+ з, понижает степень диссоциации воды и подавляет гидролиз, вызывая сдвиг равновесия влево:

Alc HCl + Н 2 О = А1с + ОН 3 + + Cl - ; HCl + Н 2 О = ОН 3 + + Cl - .

Уменьшение концентрации ионов ОН 3 + в растворе, например, вследствие щелочности стекла, сдвигает равновесие вправо. Нагревание раствора во время стерилизации, увеличивающее степень диссоциации воды и повышение рН раствора за счет выщелачивания стекла, вызывает в значительной степени усиление гидролиза соли, что приводит к накоплению в растворе труднорастворимого азотистого основания.

Правило 5

Растворы солей слабых оснований и сильных кислот стабилизируют добавлением 0,1 М раствора кислоты хлористоводородной.

Количество кислоты хлористо-водородной, необходимое для стабилизации раствора, зависит от свойств лекарственного вещества. Если нет указаний в ГФ или ФС, то добавляют 10 мл 0,1 М раствора кислоты хлористо-водородной на 1 л стабилизируемого раствора. Роль последней заключается в нейтрализации щелочи, выделяемой стеклом, и в смещении рН раствора в кислую сторону. Это создает условия, препятствующие гидролизу, омылению слож-

ных эфиров, окислению фенольных, альдегидных или лактонных групп. Пример 1

Раствор новокаина 1% (приказ МЗ РФ от 16.07.1997 г. ? 214).

Состав: новокаина 10,0; раствора кислоты хлористо-водородной 0,1 М до рН 3,8-4,5; воды для инъекций до 1 л.

Введение кислоты предотвращает омыление сложного эфира, сопровождающееся изменением фармакологического действия (образование анилина из новокаина).

25.4.2. Стабилизация растворов солей слабых кислот и сильных оснований

К солям слабых кислот и сильных оснований относятся: натрия тиосульфат, кофеин-бензоат натрия, теофиллин и др. В водных растворах соли слабых кислот и сильных оснований легко гидролизуются, образуя слабощелочную реакцию среды. Это приводит к образованию труднорастворимых соединений, дающих в растворах муть или осадок. Катализирует процесс кислая среда, которая может создаваться за счет растворения в воде углерода диоксида (рН воды для инъекций - 5,0-6,8).

Правило 6

Для стабилизации растворов солей слабых кислот и сильных оснований необходимо добавление 0,1 М раствора натрия гидро- ксида или натрия гидрокарбоната.

Пример 2

Раствор натрия нитрита, который по ГФ Х готовят с добавлением 2 мл 0,1 Мраствора натрия гидроксида на 1 л (рН 7,5-8,2). Получение стойкого раствора эуфиллина решается применением лекарственного вещества для инъекций с повышенным содержанием этилендиамина

(18-22% вместо 14-18%).

Правило 7

Вода для инъекций должна освобождаться от углерода диоксида путем кипячения.

25.4.3. Стабилизация растворов легкоокисляющихся веществ

К легкоокисляющимся веществам относятся: кислота аскорбиновая, адреналина гидротартрат, этилморфина гидрохлорид, вика- сол, новокаинамид, производные фенотиазина и другие лекарственные вещества, содержащие карбонильные, фенольные, этанольные, аминные группы с подвижными атомами водорода.

Для стабилизации используют:

1. Прямые антиоксиданты, сильные восстановители, обладающие более высокой способностью к окислению. Действие их основано на быстром окислении серы низкой валентности:

Na 2 SO 3 - натрия сульфит;

Na 2 S 2 0 3 - натрия метабисульфит;

NaHS0 3 - натрия сульфит кислый;

Тиомочевина;

Ронгалит (натрия формальдегидсульфоксилат);

Унитиол (2, 3-димеркаптопропансульфонат натрия).

2. Органические вещества, содержащие альдегидные, этанольные и фенольные группы:

Парааминофенол;

Кислота аскорбиновая и др.

Механизм действия антиоксидантов изложен в разделе «Вспомогательные вещества».

3. Антикатализаторы.

Влияние на процесс окисления лекарственных веществ оказывает присутствие следов тяжелых металлов (Fe 3 +, Cu+, Mn 2 + и др.), которые являются катализаторами процессов окисления. Установлено, что изменение цвета растворов салицилатов обусловлено окислением фенольного гидроксила в присутствии следов ионов марганца.

Ионы тяжелых металлов, участвуя в цепной окислительно-восстановительной реакции, способны отрывать электроны от при- сутствующих вместе с ними в растворах различных ионов, переводя последние в радикалы.

Для стабилизации легкоокисляющихся веществ используют комплексоны:

ЭДТА - этилендиаминтетрауксусная кислота;

Трилон Б - динатриевая соль этилендиаминтетрауксусной кислоты;

Тетацин-кальций;

Кальций-динатриевая соль этилендиаминтетрауксусной кислоты.

Общим свойством комплексонов является способность образовывать прочные внутрикомплексные водорастворимые соединения с большим числом катионов, в том числе и тяжелых металлов.

Важным средством стабилизации растворов является кипячение или дегазирование. В воде очищенной, обычно содержащей до 9 мг кислорода на 1 л, после кипячения количество кислорода снижается до 1,4 мг/л, после насыщения углерода диоксидом - до 0,2 мг/л.

Окисление лекарственных веществ может быть уменьшено также за счет устранения действия света, температуры. Иногда растворы некоторых лекарственных веществ (например, фенотиазина) готовят при красном свете, некоторые растворы хранят в упаковке из светозащитного стекла.

Пример 3

Комплексный подход к стабилизации лекарственных препаратов на примере 1% раствора апоморфина. Для получения устойчивого раствора апоморфина используют комплекс стабилизаторов, состоящий из анальгина, обрывающего цепи окисления путем связывания пероксидных радикалов, и цистерна - вещества, разрушающего гидропероксиды. Для устранения каталитического действия ионов гидроксила раствор готовят с добавлением кислоты хлористо-водородной. Заполнение флаконов или бутылок в токе инертного газа позволяет получить растворы, устойчивые при термической стерилизации и хранении в течение нескольких лет.

25.4.4. Примеры стабилизации растворов для инъекций

Пример 4

Стабилизация растворов глюкозы

Стабилизируют 0,1 М раствором кислоты хлористоводородной до рН 3,0-4,0. В условиях аптеки для удобства работы стабилизатор готовят по следующей прописи:

Rp.: Natrii chloridi 5,2

Ас. Hydrochloric dil. 4,4 ml

Воды для инъекций до 1000 ml

При изготовлении растворов глюкозы независимо от ее концентрации, добавляют 5% от объема этого стабилизатора.

Пример 5

Стабилизация растворов кислоты аскорбиновой

Применяют антиоксидант натрия метабисульфит в количестве 2,0 г на 1 л 5% раствора. С целью снижения болезненности инъекций к раст-

вору добавляют натрия гидрокарбонат в эквивалентных количествах. Наполняют флакон почти под пробку для уменьшения количества кислорода. Раствор готовят на свежепрокипяченной воде для инъекций.

Пример 6

Стабилизация растворов новокаина высокой концентрации Rp.: Novocaini 50,0 Natrii metabisulfitis 3,0 Ас. citrici 0,2

Ac. hydrochlorici 0,1 М 10 мл Aq. pro inject. ad 1000 ml рН раствора 3,8-4,5

Раствор стерилизуют при температуре 120+2 "С в течение 8 мин. Срок хранения растворов - до 30 дней.

Пример 7

Особенности приготовления растворов натрия гидрокарбоната Применяют сырье квалификации х.ч., ч.д.а., отвечающее требованиям ГОСТа 4201, также квалификации «годен для инъекций». Натрия гидрокарбонат должен выдерживать дополнительное требование на прозрачность и бесцветность 5% раствора. Ионов кальция и магния должно быть не более 0,05%, иначе в процессе термической стерилизации раствора будет появляться опалесценция карбонатов этих катионов. Во избежание потери углерода диоксида, образующегося при гидролизе, растворение проводят при температуре не выше 20 "С в закрытом сосуде, избегая взбалтывания. Раствор стерилизуют при температуре 120+2 "С 8 мин (объем до 100 мл) и 12-15 мин (объем более 100 мл). Во избежание разрыва флаконов из-за выделения углерода диоксида разгрузку стерилизатора следует производить не ранее чем через 20-30 мин после того, как давление внутри стерилизационной камеры упадет до нуля.

25.5. ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ РАСТВОРОВ ДЛЯ ИНЪЕКЦИЙ

Процесс изготовления состоит из следующих стадий:

1. Подготовительная, в том числе: проведение расчетов, подготовка условий асептического изготовления, мойка и стерилизация тары и упаковки, получение воды для инъекций.

2. Получение растворов для инъекций, в том числе операции: растворение, фильтрация, розлив, укупорка, проверка на отсутст-

вие механических включений, полный химический анализ, стерилизация.

3. Маркировка готовой продукции.

Типовая технологическая схема изготовления инъекционных растворов представлена на схеме 25.1. Технологический процесс изготовления разделяется на 3 потока:

Подготовка тары и упаковки;

Подготовка раствора;

Стерилизация, контроль качества, упаковка и маркировка готовой продукции.

Для получения растворов для инъекций и инфузий используют флаконы из нейтрального стекла марки НС-1 (для медицинских препаратов, антибиотиков) и НС-2 (сосуды для крови). В порядке исключения (после освобождения от щелочности) используют флаконы из стекла марки АБ-1 и МТО. Срок хранения растворов в них не должен превышать 2 сут.

При обработке флаконы из щелочного стекла заполняют водой очищенной, стерилизуют при температуре 120 ?С 30 мин. После обработки проводят контроль ее эффективности (потенциометрическим или ацидиметрическим методом). Изменение значения рН воды до и после стерилизации во флаконе не должно быть более 1,7.

Новую посуду снаружи и внутри обмывают водопроводной водой, замачивают на 20-25 мин в моющих растворах, подогретых до температуры 50-60 ?С. Используют также взвесь горчицы 1:20, 0,25% раствор «Дезмола», 0,5% растворы «Прогресса», «Лотоса», «Астры», 1% раствор СПМС (смесь сульфанола с натрия триполифосфатом 1:10). При сильном загрязнении посуду на 2-3 ч замачивают в 5% взвеси горчицы или растворе моющих средств в соответствии со специальной инструкцией.

Вымытую посуду стерилизуют горячим воздухом при температуре 180 ?С 60 мин. Посуду, бывшую в употреблении, дезинфицируют: 1% раствором активированного хлорамина - 30 мин; 3% свежеприготовленным раствором водорода пероксида с добавлением 0,5% моющих средств - 80 мин или 0,5% раствором «Дезмола» - 80 мин.

Для укупорки флаконов с инъекционными растворами используют пробки специальных сортов резины: ИР-21 (силиконовая); 25 П (натуральный каучук); 52-369, 52-369/1, 52-369/П (бутиловый каучук); ИР-119, ИР-119А (бутиловый каучук). Новые резиновые пробки

Схема 25.1. Типовая технологическая растворов

обрабатывают с целью удаления с их поверхности серы, цинка и других веществ в соответствии с инструкцией.

Пробки, бывшие в употреблении, промывают водой очищенной и кипятят в ней 2 раза по 20 мин, стерилизуют при температуре 121+2 ?С 45 мин.

Для изготовления растворов используют воду для инъекций (см. главу 21) и лекарственные средства квалификации «Для инъек- ций» или другие, если имеется указание в соответствующих ФС.

Фильтрование растворов для инъекций проводят через глубинные, чаще мембранные фильтры (см. главу «Асептика, стерилизация фильтрованием»).

В случае приготовления малых объемов инъекционных растворов применяют фильтр «Грибок» (рис. 25.13), представляющий собой воронку, обтянутую фильтровальным материалом, и работающий под разрежением. Фильтровальный пакет состоит из шелковой ткани в 2 слоя, фильтровальной бумаги в 3 слоя, марлевой прокладки и шелковой ткани в 2 слоя. Полностью заполненную воронку обвязывают сверху парашютным шелком. Фильтруют под вакуумом.

Профильтрованный раствор с помощью дозаторов разливают в подготовленные бутылки для инъекционных растворов. Закрывают пробками.

Флаконы с растворами для инъекций, укупоренные резиновыми пробками, контролируют на отсутствие механических включений. При обнаружении механических включений при первичном контроле раствора его перефильтровывают.

Рис. 25.13. Фильтр «Грибок»:

1 - воронка, обтянутся слоем фильтровальных материалов; 2 - линия подачи растворов; 3 - стакан с фильтруемым раствором; 4 - вакуум; 5 - приемник с профильтрованным раствором; 6 - ловушка на вакуумной линии

После изготовления растворы для инъекций подвергают химическому анализу, заключающемуся в определении подлинности (качественный анализ) и количественного содержания лекарственных веществ, входящих в состав лекарственной формы (количественный анализ). Количественному и качественному анализам провизоры-аналитики подвергают первично все серии инъекционных растворов, которые готовят в аптеке (до стерилизации). В аптеках, где нет провизора-аналитика, количественному анализу подвергают растворы атропина сульфата, новокаина, глюкозы, кальция хлорида и изотонический раствор натрия хлорида. Контроль путем опроса провизора-технолога проводят немедленно после изготовления инъекционного раствора. При положительном результате обкатывают металлическими колпачками.

Закатанные бутылки с растворами для инъекций маркируют по алюминиевому колпачку, указывая наименование, номер серии.

Маркированные флаконы помещают в автоклав и стерилизуют в соответствии с указаниями ГФ, учитывая объем раствора в сосуде. После стерилизации растворы анализируют на содержание механических включений в соответствии с приказом? 308. Забракованные флаконы переработке не подлежат.

Отбракованные флаконы направляют на полный анализ в соответствии с требованиями ГФ или ФС.

Отбирают пробу на анализ стерильности и отсутствие пирогенных веществ. В случае положительного результата маркируют и упаковывают в гофрокоробки.

25.6. КОНТРОЛЬ РАСТВОРОВ НА ОТСУТСТВИЕ МЕХАНИЧЕСКИХ ВКЛЮЧЕНИЙ

В процессе изготовления растворы подвергаются первичному и вторичному контролю.

Первичный контроль осуществляется после фильтрования и фасовки раствора. При этом просматривается каждая бутылка или флакон с раствором. При обнаружении механических включений раствор повторно фильтруют, вновь просматривают, укупоривают, маркируют и стерилизуют. Растворы, изготовленные асептически, просматривают 1 раз после розлива или стерилизующего фильтрования.

Вторичному контролю подлежат также 100% бутылок и флаконов с растворами, прошедших стадию стерилизации перед их оформлением

Рис. 25.14. Устройство для контроля растворов на механические включения

и упаковкой. Для просмотра бутылок используют «Устройство для контроля растворов на отсутствие механических загрязнений» (УК-2) (рис. 25.14) и др. Контроль растворов осуществляется путем их просмотра невооруженным глазом на черном и белом фоне, освещенном электрической матовой лампой в 60 ватт или лампой дневного света 20 ватт, для окрашенных растворов - соответственно в 100 и 30 ватт. Расстояние от глаза до просматриваемого объекта должно быть 25-30 см, а угол оптической оси просмотра к направлению света - около 90 ?. Линия зрения должна быть направлена книзу при вертикальном положении головы.

В зависимости от объема бутылки или флакона просматривают одновременно от 1 до5 штук. Бутылки или флаконы берут в одну или обе руки за горловины, вносят в зону контроля, плавным движением перевора- чивают в положение вверх донышками и просматривают на черном и белом фоне. Затем плавным движением, без встряхивания переворачивают в первоначальное положение вниз донышками и также просматривают.

Время контроля соответственно составляет: 1 бутылки (флакона) вместимостью 100-500 мл - до 20 с, 2 бутылок (флаконов) вмести-

мостью 50-100 мл - 10 с, от 2 до 5 бутылок (флаконов) вместимостью 5- 50 мл - 8-10 с. Визуальным осмотром могут быть идентифицированы частицы размером более 50 мкм.

Фармакопеей США USP 24/NF19 установлен инструментальный контроль за содержанием механических частиц в инъекционных растворах: не более 12 частиц/мл - размером более 10 микрон и не более 2 частиц/мл - размером более 25 микрон (рис. 25.15).

Рис. 25.15. Примеси, отфильтрованные из инфузионного раствора (увеличено 1 . 700)

25.7. ОБЩИЕ ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ИНЪЕКЦИОННЫМ ЛЕКАРСТВЕННЫМ ФОРМАМ

Растворы для инъекций должны быть прозрачными по сравнению с водой для инъекций. Объем инъекционных растворов в сосудах должен быть больше номинального (табл. 25.5).

Таблица 25.5. Объем инъекционных растворов в сосудах

Номинальный объем, мл

Объем заполнения, мл

Количество сосудов для контроля запол- нения, шт.

невязкие растворы

вязкие растворы

1,10

1,15

2,15

2,25

5,30

5,50

10,0

10,50

10,70

20,0

20,60

20,90

50,0

5l,0

51,50

Более 50

На 2 мл более номинального

На 3% более номинального

Растворы для инъекций должны быть стерильными, не иметь видимых механических включений.

Растворы для инъекций должны быть нетоксичными согласно требованиям и тест-дозам, указанным в частных статьях.

Растворы для инъекций должны быть апирогенными согласно требованиям и тест-дозам, указанным в частных статьях.

Испытанию подлежат все лекарственные средства для парентерального применения при объеме одноразовой дозы 10 мл и более, а также при меньшей дозе, если есть указание в частной статье.

Растворы для инъекций должны выдерживать испытание на отсутствие механических включений.

Отклонение массы содержимого одного сосуда от средней массы не должно превышать нормативов ГФ.

25.8. МАРКИРОВКА РАСТВОРОВ ДЛЯ ИНЪЕКЦИЙ

На всех этикетках для оформления лекарственных препаратов, приготовляемых для лечебно-профилактических учреждений, должны быть следующие обозначения:

Местонахождение аптечного учреждения (предприятия)...;

Наименование аптечного учреждения (предприятия)...;

Больница?...;

Отделение... ;

Дата (приготовления)... ;

Срок годности... дней;

Приготовил... проверил... отпустил... ;

Анализ?... ;

Подробный способ применения: «Внутривенно», «Внутривенно (капельно)», «Внутримышечно» («Для инъекций»);

Состав лекарственного препарата (предусматривается пустое место для указания состава).

25.9. ХРАНЕНИЕ РАСТВОРОВ ДЛЯ ИНЪЕКЦИЙ

Лекарственные формы для инъекций следует хранить в прохладном, защищенном от света месте, в отдельном шкафу или изолированном помещении и с учетом особенности тары (хрупкость), если нет других указаний на упаковке.

Плазмозамещающие и дезинтоксикационные растворы хранят изолированно при температуре в пределах от 0 до 40 ?С в защищенном от света месте. В некоторых случаях допускается замерзание раствора, если это не отражается на качестве препарата (приказ MЗ РФ? 377).

Контрольные вопросы

1. Какой процент в рецептуре аптек составляют растворы для инъекций?

2. Какие дисперсионные среды используют для инъекционных лекарственных форм?

3. Каковы условия получения воды для инъекций в аптеках?

4. Какие аквадистилляторы используются для получения воды для инъекций?

5. Цель использования сепарирующего устройства. Его разновидности.

6. Какие неводные и комплексные растворители используются для инъекционных растворов? Их номенклатура.

7. Каковы требования, предъявляемые к лекарственным веществам для

инъекционных растворов?

8. Чем обусловлена стабилизация растворов для инъекций?

9. Каков принцип стабилизации растворов солей слабых оснований и сильных кислот? Приведите примеры.

10. Каков принцип стабилизации растворов солей слабых кислот и сильных оснований? Приведите примеры.

11. Как используется перекисная теория окисления академика Н.Н. Семенова при стабилизации инъекционных растворов?

12. Каков основной механизм действия антиоксидантов?

13. Каков механизм стабилизирующего действия ПАВ?

14. В чем заключается отличие стабилизации растворов новокаина низких и высоких концентраций?

15. Какова технология изготовления стабильного раствора глюкозы?

16. Какие факторы и технологические приемы способствуют стабилизации инъекционных растворов?

17. Чем объяснить необходимость тщательного фильтрования растворов для инъекций и контроля их чистоты?

18. Какова взаимосвязь между использованием средств малой механизации и требованиями, предъявляемыми к растворам для инъекций при их фильтровании?

Тесты

1. Инъекционные растворы относятся к инфузионным, если их объем более:

1. 10 мл.

2. 50 мл.

3. 100 мл.

2. Для замедления (пролонгирования) действия препарата применяют его:

1. Спиртовые растворы.

2. Водные растворы.

3. Масляные растворы или эмульсии.

3. В качестве растворителей не применяют:

1. Воду для инъекций.

2. Воду очищенную.

3. Жирные масла.

4. Этилолеат.

4. В качестве комплексного растворителя может быть использовано все, кроме:

1. Этанола.

2. Глицерина.

3. Метанола.

4. Пропиленгликоля.

5. ПЭО-400.

5. Предотвращает кристаллизацию веществ из масел в процессе хранения:

1. Глицерин.

2. Этанол.

3. Пропиленгликоль.

4. Бензилбензоат.

6. Лекарственные вещества, используемые для приготовления инъекционных растворов, хранят:

1. В штангласах.

2. Стерильных небольших штангласах.

3. В стерильных больших штангласах.

7. Эуфиллин для инъекций должен содержать повышенное количество:

1. Этилендиамина (18-22%).

2. Этилендиамина (14-18%).

3. Теофиллина.

8. Лекарственные средства для внутриполостных, внутрисердечных, внутриглазных или других инъекций, имеющих доступ к спинномозговой жидкости, а также при разовой дозе, превышающей 15 мл, должны содержать:

1. Количество консервантов не более 0,5%.

2. Количество консервантов не более 0,2%.

3. Не должны содержать консервантов.

9. Разрешается смешивание лекарственных препаратов в одном флаконе со следующими внутривенными растворами:

1. Плазмозаменителями.

2. Гидролизатами белка.

3. Растворами аминокислот.

4. Кровью, плазмой и другими препаратами крови.

5. Бикарбонатом натрия.

6. Натрия хлоридом.

7. Жировой эмульсией.

10. Смешивание в одном флаконе веществ, обладающих свойствами кислоты и основания, приводит к реакции взаимодействия:

1. Всегда.

2. Иногда.

3. Никогда.

11. По сравнению с другими изготовляемыми в аптеках лекарственными формами (растворы для внутреннего и наружного применения, порошки, мази и т.д.), для которых лишь на отдельные препараты имеются частные

статьи в ГФ Х, ФС, ВФС, составы всех растворов для инъекций, а также способы обеспечения их стерильности и стабильности:

1. Не регламентированы.

2. Регламентированы.

12. Увеличение рН раствора приводит к:

1. Осаждению оснований из солей.

2. Растворению солей.

13. Растворы солей слабых оснований и сильных кислот стабилизируют добавлением:

1. 0,1 М раствора кислоты хлористо-водородной.

2. 0,1 М раствора натрия гидрокарбоната.

3. 0,1 М раствора пероксида водорода.

14. Прямые антиоксиданты - это:

1. Na 2 S 2 0 3 - натрия метабисульфит.

2. Тетацин-кальций.

3. Кальций-динатриевая соль этилендиаминтетрауксусной кислоты.

15. На флаконах с какими растворами при оформлении их к стерилизации делают пометку о времени изготовления - с учетом того, что интервал времени от изготовления этих растворов до начала стерилизации регламентируется?

1. С антибиотиками.

2. Для офтальмологии.

3. Для инъекций.

4. Для новорожденных.

16. Интервал времени от начала изготовления инъекционных и инфузионных растворов до начала стерилизации не должен превышать:

1. 1,5 ч.

2. 2 ч.

3. 3 ч.

4. 6 ч.

5. 12 ч.

17. Объем инъекционных растворов в сосудах должен быть:

1. Больше номинального.

2. Меньше номинального.

3. Равен номинальному.

Растворы глюкозы. Промышленностью выпускаются растворы глюкозы для инъекций в концентрации 5, 10, 25 и 40%. Вместе с тем, инъекционные растворы глюкозы в значительных количествах готовятся в аптеках. Растворы глюкозы сравнительно нестойки при длительном хранении. Основным фактором, определяющим устойчивость глюкозы в растворе, является рН среды. В щелочной среде происходит ее окисление, карамелизация и полимеризация. При этом наблюдается пожелтение, а иногда побурение раствора. В этом случае под влиянием кислорода образуются оксикислоты: гликолевая, уксусная, муравьиная и другие, а также ацетальдегид и оксиметил-фурфурол (разрушение связи между углеродными атомами). Для предотвращения этого процесса растворы глюкозы стабилизируют ОДМ раствором кислоты хлористоводородной до рН = 3,0-4,0, так как в этой среде происходит минимальное образование 5-оксиметил-фурфурола, обладающего нефрогепатотоксическим действием.

В сильно кислой среде (при рН = 1,0-3,0) в растворах глюкозы образуется.D-глюконовая (сахарная) кислота. При дальнейшем ее окислении, особенно в процессе стерилизации, она превращается в 5-оксиметилфурфурол, вызывающий окрашивание раствора в желтый цвет, что связано с дальнейшей полимеризацией. При рН = 4,0- 5,0 реакция разложения замедляется, а при рН выше 5,0 разложение до оксиметилфурфурола снова усиливается. Повышение рН обусловливает разложение с разрывом цепи глюкозы.

ГФ X предписывает стабилизировать растворы глюкозы смесью натрия хлорида 0,26 г на 1 л раствора и ОДМ раствора кислоты хлористоводородной до рН = 3,0-4,0.

В условиях аптеки для удобства работы этот раствор (известный под названием стабилизатор Вейбеля) приготавливают заранее по следующей прописи:

Натрия хлорида - 5,2 г

Кислоты хлористоводородной разбавленной (8,3 %) 4,4 мл

Воды для инъекций до - 1л

При приготовлении растворов глюкозы (независимо от ее концентрации) стабилизатора Вейбеля добавляют 5 % от объема раствора.

Механизм стабилизирующего действия натрия хлорида изучен недостаточно. Некоторые авторы предполагали, что при добавлении натрия хлорида образуется комплексное соединение по месту альдегидной группы глюкозы. Этот комплекс очень непрочен, натрия хлорид перемещается от одной молекулы глюкозы к другой, замещая альдегидные группы, и тем самым подавляет ход окислительно-восстановительной реакции.

Однако на современном уровне учения о строении Сахаров эта теория не отражает всей сложности происходящих процессов. Другая теория объясняет эти процессы следующим образом. Как известно, в твердом состоянии глюкоза находится в циклической форме. В растворе происходит частичное раскрытие колец с образованием альдегидных групп, причем между ациклической и циклической формами устанавливается подвижное равновесие. Ациклические (альдегидные) формы глюкозы наиболее реакционноспособны к окислению. Высокой устойчивостью характеризуются циклические формы глюкозы с кислородными мостиками между первым и пятым углеродными атомами. Добавление стабилизатора создает в растворе условия, способствующие сдвигу равновесия в сторону более устойчивой к окислению циклической формы. В настоящее время считают, что натрия хлорид не способствует циклизации глюкозы, а в сочетании с кислотой хлористоводородной создает буферную систему для глюкозы.

При термической стерилизации растворов глюкозы без стабилизатора образуются диены, карбоновые кислоты, полимеры, продукты фенольного характера. Заменив термическую стерилизацию на стерилизующую фильтрацию, можно приготовить 5 % -ный раствор глюкозы со сроком годности 3 года без стабилизатора.

Большое значение для стабильности приготавливаемых растворов имеет качество самой глюкозы, которая может содержать кристаллизационную воду. В соответствии с ФС 42-2419-86 производится глюкоза безводная, содержащая 0,5% воды (вместо 10%). Она отличается растворимостью, прозрачностью и цветом раствора. Срок ее годности 5 лет. При использовании глюкозы водной ее берут больше, чем указано в рецепте. Расчет производят по формуле:

х - необходимое количество глюкозы;

а - количество глюкозы безводной, указанное в рецепте;

б - процентное содержание воды в глюкозе по данным анализа.

Rp.: Solutionis Glucosi 40 % - 100ml

Da. Signa. По 10мл внутривенно

Например, глюкоза содержит 9,8 % воды. Тогда водной глюкозы необходимо взять 44,3 г (вместо 40,0 г безводной).

В асептических условиях в мерной колбе емкостью 100 мл в воде для инъекций растворяют глюкозу (44,3 г) «годен для инъекций», добавляют стабилизатор Вейбеля (5 мл) и доводят объем раствора до 100 мл. Проводят первичный химический анализ, фильтруют, укупоривают резиновой пробкой, проверяют на отсутствие механических примесей. В случае положительного контроля флаконы, укупоренные пробками, обкатывают алюминиевыми колпачками и маркируют, проверяют герметичность укупорки.

Ввиду того, что глюкоза - хорошая среда для развития микроорганизмов, полученный раствор стерилизуют немедленно после приготовления при 100 °С в течение 1 часа или при 120 °С в течение 8 минут. После стерилизации проводят вторичный контроль качества раствора и оформляют к отпуску. Срок хранения раствора - 30 суток.

Дата №рецепта

Glucosi 44,3 (вл. 9,8%)

Liguoris Wejbeli 5 ml

Sterilis У общ = 100 ml

Приготовил: (подпись)

Проверил: (подпись)

Растворы натрия гидрокарбоната. Растворы натрия гидрокарбоната в концентрации 3, 4, 5 и 7 % применяются для капельного внутривенного введения при гемолизе крови, ацидозах, для реанимации (при клинической смерти), для регулирования солевого равновесия.

Rp.: Solutionis Natrii hydrocarbonatis 5 % - 100 ml

При использовании натрия гидрокарбоната «годен для инъекций» не всегда удается получить прозрачные и устойчивые растворы, поэтому применяют натрия гидрокарбонат «х.ч.» или «ч.д.а.». Если натрия гидрокарбонат содержит влагу, то делают пересчет на сухое вещество. По данной прописи 5,0 г натрия гидрокарбоната (в асеп- тических условиях) помещают в мерную колбу на 100 мл, растворяют в части воды для инъекций, затем доводят объем раствора до 100 мл. Ввиду потенциальной нестабильности натрия гидрокарбоната его растворяют при возможно более низкой температуре (15- 20 °С), избегая сильного взбалтывания раствора. Проводят первичный химический анализ, фильтруют, укупоривают и проверяют на отсутствие механических примесей. При положительном анализе флакон, укупоренный резиновой пробкой, закрывают металлическим колпачком и обкатывают. Во избежание разрыва флаконов при стерилизации их заполняют раствором не более чем на 80 % объема. Раствор стерилизуют при 120 С 8 минут.

Во время стерилизации натрия гидрокарбонат подвергается гидролизу. При этом выделяется углерода диоксид и образуется натрия карбонат:

2NaHC0 3 →Na 2 C0 3 + H 2 0 + C0 2

При охлаждении идет обратный процесс, углекислота растворяется и образуется натрия гидрокарбонат. Поэтому для достижения равновесия в системе простерилизованные растворы можно использовать только после их полного охлаждения, не ранее чем через 2 часа, перевернув их несколько раз с целью перемешивания и растворения углекислоты, находящейся над раствором. После стерилизации проводят вторичный контроль качества раствора и оформляют к отпуску.

Полученный раствор должен быть бесцветным и прозрачным, рН = 9,1-8,9. При внутриаптечной заготовке срок хранения раствора при комнатной температуре 30 суток.

Прозрачные растворы с концентрацией натрия гидрокарбоната 7-8,4 % можно получить при стабилизации трилоном Б с последующей микрофильтрацией через мембранные фильтры «Владипор» типа МФА-А №1 или № 2 с предфильтром из фильтровальной бумаги.

ИЗОТОНИЧЕСКИЕ РАСТВОРЫ

Изотонические растворы - это растворы, которые имеют осмотическое давление, равное осмотическому давлению жидкостей организма (крови, плазмы, лимфы, слезной жидкости и др.) .

Название изотонический происходит от гр. isos - равный, tonus - давление.

Осмотическое давление плазмы крови и слезной жидкости организма в норме находится на уровне 7,4 атм (72,82 10 4 Па). При введении в организм всякий раствор индифферентного вещества, который отклоняется от естественного осмотического давления сыворотки, вызывает резко выраженное чувство боли, которое будет тем сильнее, чем больше отличается осмотическое давление вводимого раствора и жидкости организма.

Плазма, лимфа, слезная и спинномозговая жидкости имеют постоянное осмотическое давление, но при введении в организм инъекционного раствора осмотическое давление жидкостей изменяется. Концентрация и осмотическое давление различных жидкостей в организме поддерживаются на постоянном уровне действием так называемых осморегуляторов.

При введении раствора с высоким осмотическим давлением (гипертонический раствор) в результате разности осмотических давлений внутри клетки или эритроцитов и окружающей их плазмой начинается движение воды из эритроцита до выравнивания осмотических давлений. Эритроциты при этом, лишаясь части воды, теряют свою форму (сморщиваются) - происходит плазмолиз.

Гипертонические растворы в медицинской практике используются для снятия отеков. Гипертонические растворы натрия хлорида в концентрациях 3, 5, 10 % применяют наружно для оттока гноя при лечении гнойных ран. Гипертонические растворы также оказывают противомикробное действие.

Если в организм вводится раствор с низким осмотическим давлением (гипотонический раствор), жидкость при этом будет проникать внутрь клетки или эритроцита. Эритроциты начинают разбухать, и при большой разнице в осмотических давлениях внутри и вне клетки оболочка не выдерживает давления и разрывается - происходит гемолиз.

Клетка или эритроцит при этом погибают и превращаются в инородное тело, которое может вызвать закупорку жизненно важных капилляров или сосудов, в результате чего наступает паралич отдельных органов или же смерть. Поэтому такие растворы вводятся в небольших количествах. Целесообразно вместо гипотонических растворов прописывать изотонические.

Изотоническая концентрация прописанного лекарственного вещества не всегда указывается в рецепте. Например, врач может выписать рецепт таким способом:

Rp.: Solutionis Glucosi isotonicae 200 ml

Da. Signa. Для внутривенных вливаний

В этом случае провизор-технолог должен рассчитать изотоническую концентрацию.

Способы расчета изотонических концентраций . Существует несколько способов расчета изотонических концентраций: метод, основанный на законе Вант-Гоффа или уравнении Менделеева-Клапейрона; метод, основанный на законе Рауля (по криоскопическим константам); метод с использованием изотонических эквивалентов по натрия хлориду.

Расчет изотонических концентраций по закону Вант-Гоффа . По закону Авогадро и Жерара 1 грамм-молекула газообразного вещества при 0 "С и давлении 760 мм рт. ст. занимает объем 22,4 л. Этот закон можно отнести и к растворам с невысокой концентрацией веществ.

Чтобы получить осмотическое давление, равное осмотическому давлению сыворотки крови 7,4 атм, необходимо 1 грамм-молекулу вещества растворить в меньшем количестве воды: 22,4: 7,4 = 3,03 л.

Но учитывая, что давление возрастает пропорционально абсолютной температуре (273 К), необходимо внести поправку на температуру тела человека (37 °С) (273 + 37 = 310 К). Следовательно, для сохранения в растворе осмотического давления в 7,4 атм 1 грамм-моль вещества следует растворить не в 3,03 л растворителя, а в несколько большем количестве воды.

Из 1 грамм-моля недиссоциирующего вещества нужно пригото-вить раствор

3,03 л -273 К

х л -310 К

Однако в аптечных условиях целесообразно вести расчеты для приготовления 1 л раствора:

1 г/моль - 3,44 л

х г/моль - 1л

Следовательно, для приготовления 1 л изотонического раствора какого-либо лекарственного вещества (неэлектролита) необходимо взять 0,29 г/моль этого вещества, растворить в воде и довести объем раствора до 1 л:

т = 0,29М или 0,29 =

где т - количество вещества, необходимое для приготовления 1 л изотонического раствора, г;

0,29 - фактор изотонии вещества-неэлектролита;

М – молекулярная масса данного лекарственного вещества.

т = 0,29 М; т = 0,29 180,18 = 52,22 г/л.

Следовательно, изотоническая концентрация глюкозы составляет 5,22 %. Тогда, согласно приведенному выше рецепту, для приготовления 200 мл изотонического раствора глюкозы ее необходимо взять 10,4 г.

5, 2 л – 100

х г - 200 мл

Зависимость между осмотическим давлением, температурой, объемом и концентрацией в разбавленном растворе неэлектролита можно также выразить уравнением Менделеева-Клапейрона:

PV = nRT,

Р - осмотическое давление плазмы крови (7,4 атм);

V - объем раствора, л; R - газовая постоянная, выраженная для данного случая в атмосферо-литрах (0,082);

Т - абсолютная температура тела (310 К);

п - число грамм-молекул растворенного вещества.

или т= 0,29*М.

При расчете изотонических концентраций электролитов как по закону Вант-Гоффа, так и уравнению Менделеева-Клапейрона, следует внести поправку, то есть величину (0,29" М) необходимо разделить на изотонический коэффициент I, который показывает, во сколько раз увеличивается число частиц при диссоциации (по сравнению с недиссоциирующим веществом), и численно равен:

i = 1 + а (п - 1),

i - изотонический коэффициент;

а - степень электролитической диссоциации;

п - число частиц, образующихся из одной молекулы вещества при диссоциации.

Например, при диссоциации натрия хлорида образуется две частицы (ион Na + и ион С1ˉ), тогда, подставив в формулу значения а = 0,86 (берется из таблиц) и п = 2, получают:

i = 1 + 0,86 (2 - 1) = 1,86.

Следовательно, для NaCl и ему подобным бинарным электролитам с однозарядными ионами i = 1,86. Пример для СаС1 2: п = 3, а = 0,75,

i=l + 0,75 (3 - 1) = 2,5.

Следовательно, для СаС1 2 и подобным ему тринарным электролитам

i = 2,5 (СаС1 2 , Na 2 S0 4 , MgCl 2 , Na 2 HP0 3 и др.).

Для бинарных электролитов с двухзарядными ионами CuS0 4 , MgS0 4 , ZnS0 4 и др. (а = 0,5; п = 2):

i = 1 + 0,5(2-1) = 1,5.

Для слабых электролитов (борная, лимонная кислоты и др.) (а = 0,1; п = 2):

i = 1+ 0,1 (2-1) = 1,1.

Уравнение Менделеева-Клапейрона с изотоническим коэффициентом имеет вид: , тогда, решая уравнение в отношение т, находят:

Для натрия хлорида, например,

Следовательно, для приготовления 1 л изотонического раствора натрия хлорида необходимо его взять 9,06 г, или изотоническим будет раствор натрия хлорида в концентрации 0,9 %.

Для определения изотонических концентраций при приготовлении растворов, в состав которых входят несколько веществ, необходимо проведение дополнительных расчетов. По закону Дальтона осмотическое давление смеси равно сумме парциальных давлений ее компонентов:

Р = Р 1 + Р 2 + Р 3 + …. и т.д.

Это положение может быть перенесено й на разбавленные растворы, в которых необходимо вначале рассчитать, какое количество изотонического раствора получается из вещества или веществ, указанных в рецепте. Затем устанавливают по разности, какое количество изотонического раствора должно дать вещество, с помощью которого раствор изотонируется, после чего находят количество этого вещества.

Для изотонирования растворов применяют натрия хлорид. Если прописанные вещества не совместимы с ним, то можно использовать натрия сульфат, натрия нитрат или глюкозу.

Rp.: Hexamethylentetramini 2,0

Natrii chloridi q.s.

Aquae pro injectionibus ad 200 ml

ut fiat solutio isotonica

Sterilisa! Da. Signa. Для инъекций

Рассчитывают количество изотонического раствора, полученного за счет 2,0 г уротропина (М.м. = 140). Изотоническая концентрация уротропина будет: 0,29 140 = 40,6 г или 4,06 %.

4,06 - 100 мл х = 50 мл.

2,0 - х

Определяют количество изотонического раствора, которое должно быть получено за счет добавления натрия хлорида:

200 мл - 50 мл = 150 мл.

Рассчитывают количество натрия хлорида, необходимое для получения 150 мл изотонического раствора:

0,9 г - 100 мл х =(0,9 150): 100=1,35 г.

х г - 150 мл

Таким образом, для получения 200 мл изотонического раствора, содержащего 2,0 г гексаметилентетрамина, необходимо добавить 1,35 г натрия хлорида.

Расчет изотонических концентраций по закону Рауля, или криоскопическому методу. По закону Рауля давление пара над раствором пропорционально молярной доле растворенного вещества.

Следствие из этого закона устанавливает зависимость между понижением давления пара, концентрацией вещества в растворе и его температурой замерзания, а именно: понижение температуры замерзания (депрессия) пропорционально понижению давления пара и, следовательно, пропорционально концентрации растворенного вещества в растворе. Изотонические растворы различных веществ замерзают при одной и той же температуре, то есть имеют одинаковую температурную депрессию 0,52 °С.

Депрессия сыворотки крови (Δt) равна 0,52 °С. Следовательно, если приготовленный раствор какого-либо вещества будет иметь депрессию, равную 0,52 °С, то он будет изотоничен сыворотке крови.

> Депрессия (понижение) температуры замерзания 1 %-ного раствора лекарственного вещества (Δt) показывает, на сколько градусов понижается температура замерзания 1 %-ного раствора лекарственного вещества по сравнению с температурой замерзания чистого растворителя.

Зная депрессию 1 % -ного раствора любого вещества, можно определить его изотоническую концентрацию.

Депрессии 1 %-ных растворов приведены в приложении 4 учебника. Обозначив депрессию 1 % -ного раствора вещества величиной At, определяют концентрацию раствора, имеющего депрессию, равную 0,52 °С, по следующей формуле:

Например, необходимо определить изотоническую концентрацию глюкозы х, если депрессия 1 %-ного раствора глюкозы = 0,1 °С:

1%-0.1

Следовательно, изотоническая концентрация раствора глюкозы будет составлять 5,2 %.

При расчете количества вещества, необходимого для получения изотонического раствора, пользуются формулой:

где т 1 - количество вещества, необходимое для изотонирования, г;

V - объем раствора по прописи в рецепте, мл.

г глюкозы необходимо на 200 мл изотонического раствора.

При двух компонентах в прописи для расчета изотонических концентраций используют формулу:

,

где т 2

Δt 2 - депрессия температуры замерзания 1 % -ного раствора прописанного вещества;

С 2 - концентрация прописанного вещества, %;

Δt. - депрессия температуры замерзания 1 % -ного раствора вещества, взятого для изотонирования раствора, прописанного в рецепте;

V - объем прописанного в рецепте раствора, мл;

Например:

Rp.: Sol. Novocaini 2 % 100 ml

Natrii sulfatis q.s.,

ut fiat sol. Isotonica

Da. Signa. Для инъекций

Δt 1 - депрессия температуры замерзания 1 % -ного раствора натрия сульфата (0,15 °С);

At 2 - депрессия температуры замерзания 1 % -ного раствора новокаина (0,122 °С);

С 2 - концентрация раствора новокаина (2 %).

Г натрия сульфата.

Следовательно, для приготовления изотонического раствора новокаина по приведенному рецепту необходимо взять 2,0 г новокаина и 1,84 г натрия сульфата.

При трех и более компонентах в прописи для расчета изотонических концентраций пользуются формулой:

,

где т 3 - количество вещества, необходимое для изотонирования раствора, г;

0,52 °С - депрессия температуры замерзания сыворотки крови;

Δt 1 , - депрессия температуры замерзания 1 % -ного раствора вещества, взятого для изотонирования раствора, прописанного в рецепте;

Δt 2 - депрессия температуры замерзания 1 % -ного раствора второго компонента в рецепте;

С 2 - концентрация второго компонента в рецепте, %;

Δt 3 - депрессия температуры замерзания раствора третьего компонента в рецепте; С 3 - концентрация третьего компонента в рецепте;

V

Например:

Rp.: Atropini sulfatis 0,2

Morphini hydrochloridi 0,4

Natrii chloridi q.s.

Aquae pro injectionibus ad 20 ml

ut fiat solutio isotonica

Da. Signa. Для инъекций

Δt 1 - депрессия температуры замерзания 1 % -ного раствора натрия хлорида (0,576 °С);

Δt 2 - депрессия температуры замерзания 1 % -ного раствора атропина сульфата (0,073 "С);

С 2 - концентрация атропина сульфата (1 %);

Δt 3 - депрессия температуры замерзания 1 % -ного раствора морфина гидрохлорида (0,086 °С);

С 3 - концентрация морфина гидрохлорида (2 %);

V - объем раствора, прописанного в рецепте.

0,52-(0,073 1 + 0,086-2)-20 п ппг.„ л „

Г натрия хлорида.

При расчете изотонической концентрации по криоскопическому методу основной источник ошибок - отсутствие строгой пропорциональной зависимости между концентрацией и депрессией. Важно отметить, что отклонения от пропорциональной зависимости индивидуальны для каждого лекарственного вещества.

Так, для раствора калия йодида имеется практически линейная (пропорциональная) зависимость между концентрацией и депрессией. Поэтому изотоническая концентрация некоторых лекарственных веществ, определенная экспериментальным методом, близка к расчетной, для других же наблюдается значительная разница.

Второй источник ошибок - погрешность опыта при практическом определении депрессии 1 % -ных растворов, о чем говорят различные значения депрессий (Δt), опубликованные в некоторых источниках.

Расчет изотонических концентраций с использованием эквивалентов по натрия хлориду. Более универсальный и точный метод расчета изотонических концентраций растворов фармакопейный (принят ГФ XI) основан на использовании изотонических эквивалентов лекарственных веществ по натрия хлориду. В аптечной практике он используется наиболее часто.

> Изотонический эквивалент (Е) по натрия хлориду показывает количество натрия хлорида, создающее в одинаковых условиях осмотическое давление, равное осмотичес- , кому давлению 1,0 г лекарственного вещества. Например, 1,0 г новокаина по своему осмотическому эффекту эквивалентен 0,18 г натрия хлорида (см. приложение 4 учебника). Это означает, что 0,18 г натрия хлорида и 1,0 г новокаина создают одинаковое осмотическое давление и в равных условиях изотонируют одинаковые объемы водного раствора.

Зная эквиваленты по натрия хлориду, можно изотонировать любые растворы, а также определить изотоническую концентрацию.

Например:

1,0 г новокаина эквивалентен 0,18 г натрия хлорида,

а 0,9 г натрия хлорида - х г новокаина;

г

Следовательно, изотоническая концентрация новокаина составляет 5 %.

Rp.: Dimedroli 1,0

Natrii chloridi q.s.

Aquae pro injectionibus ad 100 ml

ut fiat solutio isotonica

Da. Signa. Внутримышечно по 2 мл 2 раза в день

Для приготовления 100 мл изотонического раствора натрия хлорида потребовалось бы 0,9 г (изотоническая концентрация - 0,9 %).

Однако, часть раствора изотонируется лекарственным веществом (димедролом).

Поэтому сначала учитывают, какая часть прописанного объема изотонируется 1,0 г димедрола. При расчете исходят из определения изотонического эквивалента по натрия хлориду. По таблице (приложение 4) находят, что Е димедрола по натрия хлориду равен 0,2 г, то есть 1,0 г димедрола и 0,2 г натрия хлорида изотонируют одинаковые объемы водных растворов.

Rp.: Solutionis Novocaini 2 % 200 ml

Natrii chloridi q.s

ut fiat solutio isotonica

Da. Signa. Для внутримышечного введения

В данном случае для приготовления 200 мл изотонического раствора натрия хлорида потребовалось бы 1,8 г:

0,9 - 100 г

Прописанные 4,0 г новокаина эквивалентны 0,72 г натрия хлорида:

1,0 новокаина - 0,18 натрия хлорида

4,0 новокаина – х натрия хлорида

Следовательно, натрия хлорида надо взять 1,8 - 0,72 = 1,08 г.

Rp.: Strichnini nitratis 0,1 % 50 ml

Natrii nitratis q.s.,

ut fiat solutio isotonica

Da.Signa. По 1 мл 2 раза в день под кожу

Вначале определяют количество натрия хлорида, необходимое для приготовления 50 мл изотонического раствора:

0,9 - 100 г

1,0 г стрихнина нитрата – 0,12 г натрия хлорида

0,05 г стрихнина нитрата - х г натрия хлорида

Следовательно, натрия хлорида требуется 0,45 - 0,01 = 0,44 г.

Но в рецепте указано, что раствор необходимо изотонировать натрия нитратом. Поэтому проводят перерасчет на это вещество (эквивалент натрия нитрата по натрия хлориду - 0,66):

0,66 г натрия хлорида – 1,0 г натрия нитрата г

0,44 г натрия хлорида – х г натрия нитрата

Таким образом, по приведенному рецепту для изотонирования требуется 0,67 г натрия нитрата.

Исходя из известных эквивалентов по натрия хлориду, были вычислены изотонические эквиваленты по глюкозе, натрия нитрату, натрия сульфату и кислоте борной, которые приведены в приложении 4 учебника. С их использованием приведенные выше расчеты упрощаются. Например:

Rp.: Solutionis Ephedrini hydrochloridi 2 % 100 ml

ut fiat solutio isotonica

Da. Signa. Для инъекций

Изотонический эквивалент эфедрина гидрохлорида по глюкозе равен 1,556. Прописанные в рецепте 2,0 г эфедрина гидрохлорида будут создавать такое же осмотическое давление, как 3,11 г глюкозы (2,0* 1,556). Так как изотоническая концентрация глюкозы равна 5,22 %, для изотонирования раствора эфедрина гидрохлорида ее следует взять 5,22 - 3,11 = 2,11 г.

Расчет изотонических концентраций по формулам. Осмотическое давление в водных растворах одного или нескольких веществ (которое равно осмотическому давлению 0,9 % -ного раствора натрия хлорида) можно выразить следующим уравнением:

т 1 *Е 1 + т 2 *Е 2 + ... + т n *Е n + т x Е x = 0,009 V, откуда

,

где т x - масса искомого вещества, г;

Е x - изотонический эквивалент по натрия хлориду искомого вещества;

т 1, m 2 ... - массы прописанных в рецепте веществ;

Е 1 , Е 2 ... - изотонические эквиваленты веществ по натрия хлориду;

V - объем раствора.

По формуле (1) можно определить количество различных лекарственных или вспомогательных веществ, которые необходимо добавить к раствору до изотонии для водных инъекций, глазных капель, примочек, полосканий.

Например:

Rp.: Solutionis Morphini hydrochloridi 1 % 100ml

ut fiat solutio isotonica

Misce. Da. Signa. По 1 мл под кожу

Для изотонирования инъекционного раствора необходимо добавить 4,17 г глюкозы безводной сорта «Для инъекций».

Rp.: Solutionis Argenti nitratis 0,5 % 10ml

Natrii nitratis q.s.,

ut fiat solutio isotonica

Misce. Da. Signa. По 2 капли 1 раз в день

Rp.: Solutionis Magnesii sulfatis isotonica 100 ml

Da. Signa. По 10 мл внутривенно 1 раз в день

Для приготовления изотонического раствора необходимо взять 6,43 г магния сульфата сорта «Для инъекций».

Изотонический раствор натрия хлорида (0,9 % -ный) создает осмотическое давление, равное 7,4 атм. Такое же осмотическое давление имеет плазма крови. Определить осмотическое давление в инъекционном растворе можно по следующей формуле:

где Р - осмотическое давление, атм.

Например:

Rp.: Natrii chloride 5,0

Kalii chloridi 1,0

Natrii acetates 2,0

Aquae pro injectionibus ad 1000 ml

Misce. Da. Signa. Для внутривенного введения («Ацесоль»)

Раствор «Ацесоль» гипотоничен. Необходимо приготовить раствор, чтобы он был изотоническим, сохраняя соотношение солей - натрия хлорид: калия хлорид: натрия ацетат - 5:1:2 (или то же самое 1: 0, 2: 0,4).

Количество веществ, которые должны быть в растворе (сохраняя их соотношение и при этом раствор должен быть изотоничным), можно рассчитать по следующей формуле:

,

где т и - масса искомого вещества, г;

т 1 - масса натрия хлорида в растворе «Ацесоль», г;

т 2 - масса калия хлорида в растворе «Ацесоль», г;

т 3 - масса натрия ацетата в растворе «Ацесоль», г;

E v E 2 , Е 3 - соответствующие изотонические эквиваленты по натрия хлориду;

V - объем раствора.

(сумма 5 1 + 1 0,76 + 2 0,46 равна 6,68).

Таким образом, чтобы раствор был изотоничным и при этом сохранялось соотношение солей как 1: 0,2: 0,4, к нему необходимо добавить: натрия хлорида 6,736 - 5 =1,74 г, калия хлорида 1,347 - 1 = 0,35 г, натрия ацетата 2,694 - 2= 0,69 г.

Расчет по формуле (3) можно проводить для гипертонических растворов с целью уменьшения количества веществ и приведения растворов к норме (изотонии).

Формулы (1), (2) и (3) впервые предложил для использования в аптечной практике ассистент кафедры технологии лекарств Запорожского медицинского института кандидат фармацевтических наук П.А. Логвин.

Наряду с изотоничностью важной характеристикой осмотического давления растворов является осмолярность. Осмолярность (осмоляльность) - величина оценки суммарного вклада различных растворенных веществ в осмотическое давление раствора.

Единицей осмолярности является осмоль на килограмм (осмоль/кг), на практике обычно используется единица миллиосмоль на килограмм (мосмоль/кг). Отличие осмолярности от осмоляльности в том, что при их расчете используют различные выражения концентрации растворов: молярную и моляльную.

Осмолярность - количество осмолей на 1 л раствора. Осмоляльность - количество осмолей на 1 кг растворителя. Если нет других указаний, осмоляльность (осмолярность) определяют с помощью прибора осмометра.

Определение величины осмолярности растворов важно при применении парентерального питания организма. Фактором ограничения при парентеральном питании является вводимое количество жидкости, оказывающее воздействие на систему кровообращения и водно-электролитный баланс. Учитывая определенные пределы «выносливости» вен, нельзя использовать растворы произвольной концентрации. Осмолярность около 1100 мосмоль/л (20 %-ный раствор сахара) у взрослого является верхней границей для введения через периферическую вену.

Осмолярность плазмы крови составляет «коло 300 мосмоль/л, что соответствует давлению около 780 кПа при 38 °С, которая является исходной точкой стабильности инфузионных растворов. Величина осмолярности может колебаться в пределах от 200 до 700 мосмоль/л.

Технология изотонических растворов. Изотонические"растворы готовят по всем правилам приготовления растворов для инъекций. Наиболее широкое применение получил изотонический раствор натрия хлорида.

Rp.: Solutionis Natrii chloridi 0,9 % 100 ml

Da. Signa. Для внутривенного введения

Для приготовления раствора натрия хлорид предварительно нагревают в суховоздушном стерилизаторе при температуре 180 °С в течение 2 часов с целью разрушения возможных пирогенных веществ. В асептических условиях на стерильных весочках отвешивают простерилизованный натрия хлорид, помещают в стерильную мерную колбу вместимостью 100 мл и растворяют в части воды для инъекций, после растворения доводят водой для инъекций до объема 100 мл. Раствор фильтруют в стерильный флакон, контролируют качество, герметически укупоривают стерильной резиновой пробкой под обкатку металлическим колпачком. Стерилизуют в автоклаве при температуре 120 °С в течение 8 минут. После стерилизации проводят вторичный контроль качества раствора и оформляют к отпуску. Срок годности раствора, приготовленного в условиях аптек,- 1 месяц.

Дата № рецепта

Natrii chloride 0,9

Aquae pro injectionibus ad 100 ml

Sterilis V общ =100 ml

Приготовил: (подпись)

Проверил: (подпись)


Похожая информация.