Экссудат

Экссудат (exsudatum; лат. exsudare – выходить наружу, выделяться) – жидкость, богатая белком и содержащая форменные элементы крови; образуется при воспалении. Процесс перемещения экссудата в окружающие ткани и полости организма называется экссудацией, или выпотеванием. Последняя возникает вслед за повреждением клеток и тканей в ответ на выделение медиаторов.

В зависимости от количественного содержания белка и вида эмигрировавших клеток различают серозный, гнойный, геморрагический, фибринозный экссудат. Встречаются также смешанные формы экссудата: серозно-фибринозный, серозно-геморрагический. Серозный экссудат состоит преимущественно из плазмы и небольшого числа форменных элементов крови. Гнойный экссудат содержит распавшиеся полиморфно-ядерные лейкоциты, клетки пораженной ткани и микроорганизмы. Для геморрагического экссудата характерно наличие значительной примеси эритроцитов, а для фибринозного – большое содержание фибрина. Экссудат может рассасываться или подвергаться организации.

Транссудат

Транссудат (лат. trans – через, сквозь + sudare – сочиться, просачиваться) – невоспалительный выпот, отечная жидкость, скапливающаяся в полостях тела и тканевых щелях. Транссудат обычно бесцветен или бледно-желтого цвета, прозрачный, реже мутноват из-за примеси единичных клеток спущенного эпителия, лимфоцитов, жира. Содержание белков в транссудате обычно не превышает 3%; ими являются сывороточные альбумины и глобулины. В отличие от экссудата в транссудате отсутствуют ферменты, свойственные плазме. Относительная плотность транссудата 1,006–1,012, а экссудата – 1,018–1,020. Иногда качественные различия между транссудатом и экссудатом исчезают: транссудат становится мутноватым, количество белка в нем возрастает до 4–5%). В таких случаях важное значение для дифференциации жидкостей имеет изучение всего комплекса клинических, анатомических и бактериологических изменений (наличие у больного боли, повышенной температуры тела, воспалительной гиперемии, кровоизлияний, обнаружение в жидкости микроорганизмов). Для отличия транссудата от экссудата применяют пробу Ривальты, основанную на разном содержании в них белка.

Образование транссудата чаще всего обусловлено сердечной недостаточностью, портальной гипертензией, застоем лимфы, тромбозом вен, почечной недостаточностью. Механизм возникновения транссудата сложен и определяется рядом факторов: увеличенным гидростатическим давлением крови и сниженным коллоидно-осмотическим давлением ее плазмы, повышенной проницаемостью капиллярной стенки, задержкой в тканях электролитов, преимущественно натрия и воды. Скопление транссудата в полости перикарда называют гидроперикардом, в брюшной полости – асцитом, в плевральной – гидротораксом, в полости оболочек яичка – гидроцеле, в подкожной клетчатке – анасаркой. Транссудат легко инфицируется, превращаясь в экссудат. Так, инфицирование асцита приводит к возникновению перитонита (асцит-перитонит). При длительном скоплении в тканях отечной жидкости развиваются дистрофия и атрофия паренхиматозных клеток, склероз. При благоприятном течении процесса транссудат может рассосаться.

Асцит

Асцит – накопление жидкости в брюшной полости. Небольшое ее количество может не давать симптомов, но увеличение жидкости ведет к растяжению брюшной полости и появлению дискомфорта, анорексии, тошноты, изжоги, болей в боку, респираторных расстройств.

Ценную информацию дает диагностический парацентез (50–100 мл); используют иглу 22 размера; выполняют пункцию по белой линии на 2 см ниже пупка или со смещением кожи в левом или правом нижнем квадранте живота. Обычное обследование включает осмотр, определение содержания в жидкости общего белка, альбумина, глюкозы, число клеточных элементов, цитологическое исследование, посев на культуру; иногда исследуют амилазу, ЛДГ, триглицериды, проводят посев на микобактерию туберкулеза. Изредка требуется лапароскопия или даже диагностическая лапаротомия. Асцит при ЗСН (констриктивный перикардит) может потребовать диагностической катетеризации правого сердца.

В соответствии с существующей классификацией выпотные жидкости делят на экссудаты и транссудаты. Отдельно выделяют жидкость кистозных образований.

Транссудаты появляются вследствие разнообразных причин: изменения проницаемости сосудистых стенок; повышения внутрикапиллярного давления; расстройства местного и общего кро­вообращения (при сердечно-сосудистой недостаточности, цирро­зах печени; снижении онкотического давления в сосудах; нефротическом синдроме и др.). Обычно это прозрачная жидкость светло-желтого цвета слабощелочной реакции. Изменение цвета и прозрачности может наблюдаться в геморрагических и хилезных транссудатах. Относительная плотность жидкости колеблет­ся от 1,002 до 1,015, белок имеет концентрацию 5-25 г/л.

Экссудаты образуются в результате воспалительных процес­сов, вызываемых различными причинами. Это жидкость щелоч­ной реакции, относительная плотность которой выше 1,018, а кон­центрация белка более 30 г/л.

Экссудаты бывают серозные и серозно-фибринозные (при ревматических плевритах, плевритах и перитонитах туберкулез­ной этиологии), серозно-гнойные и гнойные (при бактериаль­ных плевритах и перитонитах), геморрагические (чаще всего при злокачественных новообразованиях, реже при инфаркте легкого, геморрагических диатезах, туберкулезе), хилезные (при затруд­нении лимфооттока через грудной проток вследствие сдавления опухолью, увеличенными лимфоузлами, а также разрыве лимфа­тических сосудов, обусловленном травмой или опухолью), холе­стериновые (застарелые, осумкованные выпоты, содержащие крис­таллы холестерина), гнилостные (при присоединении гнилостной флоры).

Выпотные жидкости получают путем пункции соответствую­щей полости. Полученный материал собирают в чистую сухую посуду. С целью предотвращения свертывания добавляют цитрат натрия из расчета 1 г на 1 л жидкости или раствор цитрата натрия (38 г/л) в соотношении 1: 9. ОПРЕДЕЛЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ

Цвет жидкости различен в зависимости от характера выпота. Транссудаты и серозные экссудаты светло-желтого цвета. Гной­ные экссудаты обычно желтовато-зеленые с бурым оттенком от наличия крови. Большая примесь крови придает жидкости крас­но-бурый оттенок (геморрагический экссудат). Молочно-белый цвет характерен для хилезных экссудатов. Холестериновый экс­судат желтовато-буроватый, иногда с коричневым оттенком.

Прозрачность жидкости также зависит от характера выпота. Транссудаты и серозные экссудаты прозрачны. Геморрагические, гнойные, хилезные - мутные.

Определение относительной, плотности проводят с помощью урометра, методами, описанными в разделе «Исследование мочи». Количественное определение белка осуществляют так же, как в моче с сульфосалициловой кислотой (30 г/л). Поскольку в выпотной жидкости всегда содержится белок в значительно боль­шем количестве, чем в моче, готовят основное разведение выпотной жидкости в 100 раз, для чего к 0,1 мл выпотной жидко­сти приливают 9,9 мл раствора хлорида натрия (9 г/л). При очень высоком содержании белка в экссудате разведение можно продолжать, пользуясь основным разведением. Расчет производят покалибровочному графику с учетом степени разведения жидкости.

Проба Ривальта предложена для дифференцирования транс­судатов и экссудатов. Экссудат содержит серомуцин (вещество глобулиновой природы), дающий положительную пробу Ривальта

Ход определения. В цилиндр емкостью 100 мл с дистиллиро­ванной водой, подкисленной 2-3 каплями концентрированной уксусной кислоты, добавляют 1-2 капли исследуемой жидкости. Если падающие капли образуют беловатое облачко (напоминает дым от сигареты), опускающееся до дна цилиндра, - проба по­ложительная. В транссудате помутнение по ходу капли не появ­ляется либо проявляется очень слабо и быстро исчезает. Проба Ривальта не всегда позволяет отличить транссудат от экссудата при смешанных жидкостях. Большое значение для их отличия имеет микроскопическое исследование.

Таблица 11

Отличительные признаки транссудатов и экссудатов

Свойства

Выпотнаяая жидкость

транссудат

экссудат

Лимонно-желтый

Лимонно-желтый, зеленова­то-желтый, бурый, желтый, буровато-красный, кровянис­тый, молочно-белый

Характер

Серозный

Серозный, серозно-гнойный, гнойный, гнилостный, гемор­рагический

Мутность

Прозрачный или слегка мут­новатый

Разная степень помутнения

Относительная плот­ность

< 1, 015

Свертываемость

Не свертывается

Свертывается

< 30 г/л

Проба Ривальта

Отрицательная

Положительная

Клеточный состав

В основном лимфоциты, ме- зотелиальные клетки

Различные лейкоциты, мак­рофаги, мезотелий, частью в состоянии пролиферации (разное количество), эритро­циты, кристаллы холестери­на, липофаги, капли жира, элементы злокачественных новообразований

Бактериальный состав

Обычно стерилен

Микобактерии туберкулеза, стрептококки, стафилококки

МИКРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ

Микроскопическое исследование выпотных жидкостей про­водят после центрифугирования в течение 5-10 мин при 1500- 3000 об/мин и приготовления препаратов из осадка. Микроско­пическое исследование следует производить в нативных и окра­шенных препаратах.

Нативные препараты. Каплю осадка наносят на предметное стекло и накрывают покровным стеклом, микроскопируют, ис­пользуя окуляр 7, объектив 40. Исследование нативных препара­тов дает возможность ориентировочно судить о характере пато­логического процесса, количестве клеточных элементов, преоб­ладании различных форменных элементов, наличии комплексов клеток опухолевой природы, кристаллов и других элементов.

Лейкоциты в небольшом количестве (до 10-15 в поле зре­ния) обнаруживаются в транссудатах и в большом количестве в жидкостях воспалительного происхождения.Эритроциты в том или ином количестве присутствуют в лю­бой жидкости. В транссудатах и серозных экссудатах их выявляют в небольшом количестве за счет травматической примеси крови (в момент прокола). Геморрагические экссудаты обычно содер­жат очень много эритроцитов.

Клетки мезотелия - крупные клетки размером до 25 мкм и более. Обнаруживаются в большом количестве в транссудатах, располагаются одиночно, иногда в виде скоплений. Иногда вы- являются выраженные дегенеративные изменения в виде вакуо­лизации цитоплазмы (перстневидные клетки).

Опухолевые клетки расположены обычно в виде комплексов без четких границ с выраженными признаками полиморфизма вели­чины и формы.Жировые капли в виде резко преломляющих свет круглых ка­пель, окрашивающихся Суданом III в оранжевый цвет, встреча­ются в гнойных экссудатах с выраженным клеточным распадом и в хилезных экссудатах.

Кристаллы холестерина - бесцветные прозрачные пластинки с обломанными углами в виде ступенек. Обнаруживаются в ста­рых осумкованных холестериновых экссудатах, чаще туберкулез­ной этиологии.

Окрашенные препараты. Небольшую каплю осадка помещают на предметное стекло. Препарат готовят так же, как мазок кро­ви, высушивают на воздухе. Окраску производят после фиксации мазков обычными гематологическими красителями. Клеточные элементы экссудатов окрашиваются быстрее, чем элементы кро­ви, поэтому время окраски сокращается до 8-10 мин. В мазках подсчитывают процентное соотношение отдельных видов лейко­цитов, исследуют морфологию других клеточных элементов.

В окрашенных препаратах обнаруживают следующие клеточ­ные элементы.

Нейтрофилы преобладающие клетки гнойного экссудата. По морфологии нейтрофилов можно судить о тяжести воспалитель­ного процесса. Дегенеративные изменения нейтрофилов (ток- согенная зернистость и вакуолизация цитоплазмы, гиперсегмен­тация и пикноз ядер, кариорексис и кариолизис вплоть до кле­точного распада) наблюдаются при наиболее тяжелых случаях гнойного воспаления. Нейтрофилы с явлением фагоцитоза встречаются при более доброкачественных процессах.

Лимфоциты являются преобладающими клетками серозного экссудата (до 80-90% всех лейкоцитов). В небольшом количест­ве встречаются и в транссудатах. Морфология их не отличается от таковой в периферической крови.

Плазматические клетки могут встречаться при затяжном ха­рактере воспаления серозных оболочек.

Гистиоциты – тканевые моноциты, клетки различных размеров с нежной структурой ядра моноцитоидной формы и серовато-голубой цитоплазмы. Часто обнаруживаются в гнойных экссудатах в период санации полости.

Макрофаги – полиморфные клетки с ядром неправильной формы, бобовидной формы с включениями в цитоплазме. Обнаруживаются при кровоизлияниях в плевральную полость, опухолях, гнойных плевритах.

Клетки мезотелия выстилают серозные оболочки. Крупных размеров до 30 мкм округлой формы, круглое ядро чаще центрально и широкой от серого до темно-голубого цитоплазмой. Иногда могут быть двух- и многоядерные. Обнаруживаются в экссудатах и транссудатах в начальной стадии воспалительного прецесса, а также при опухолях. В жидкостях большой давности отмечаются дегенеративные изменения этих клеток (вакуолизация цитоплазмы, эксцентрично расположенное ядро).

Клетки злокачественных опухолей – клетки крупного размера 40-50 мкм с выраженным полиморфизмом (различная величина, структура и окраска ядер, нарушение ядерно-цитоплазматического отношения в пользу ядра, гиперхромия ядер, крупные множественные ядрышки). Обнаруживаются при канцероматозе плевры, брюшина вследствие первичного (мезотелиома) или вторичного поражения (метастазирование из др. органов).

10.Современные представления о гемостазе. Сосудисто-тромбоцитарное и плазменное звено гемостаза. Биологическое действие и механизмы активации. Лабораторные методы исследования сосудисто-тромбоцитарного и коагуляционного гемостаза.

Система гемостаза представляет собой совокупность многих биологических факторов и биохимических процессов, поддерживающих структурную целостность кровеносных сосудов, жидкое состояние крови и ее текучесть.

Функции:

Обеспечивает циркуляцию жидкой крови в сосудистом русле;

Способствует прекращению кровотечения при повреждении сосуда.

Функционально-морфологические компоненты:

1) эндотелий сосудов,

2)клетки крови (лейкоциты,эритроциты,тромбоциты) ,

3)система свертывания крови, включающая в себя плазменные и тромбоцитарные факторы, антикоагулянтное звено и фибринолитическую систему крови.

Гемостаз включает 3 основных этапа:

    Первичный гемостаз, в котором участвуют, в основном, сосуды и тромбоциты, он заканчивается образованием тромбоцитарного сгустка,

    Вторичный гемостаз – в котором участвуют преимущественно плазменные факторы, он закачивается образованием окончательного фибринового тромба.

    Фибринолиз, приводящий к растворению тромба.

В зависимости от механизма остановки кровотечения различают первичный и вторичный гемостаз.

Первичный гемостаз (микроциркуляторный или сосудисто-тромбоцитарный) осуществляется в мелких сосудах диаметром до 200мкм. Формируется первичный (тромбоцитарный) тромб, обеспечивающий остановку кровотечений из микрососудов, в которых давление крови невелико. Здоровый, не поврежденный эндотелий обладает тромборезистентными свойствами и поэтому кровь свободно циркулирует по сосудам, форменные элементы крови не прилипают к сосудистой стенке. При повреждении сосудистой стенки эндотелий приобретает тромбогенные свойства. Рефлекторно развивается спазм сосуда в месте повреждения. Главными стимуляторами адгезии тромбоцитов являются коллаген, обнажившийся после травмы эндотелия сосуда и фактор Виллебранда, синтезируемый клетками эндотелия и попадающий в кровоток после их повреждения. Тромбоциты начинают приклеиваться к краям поврежденного сосуда, накладываются друг на друга, закрепляются, склеиваются (адгезия и агрегация). Из тромбоцитов высвобождаются АДФ, серотонин и адреналин, которые еще больше усиливают сосудистый спазм и агрегацию тромбоцитов. Из поврежденных тканей и эндотелия сосудов выделяется тканевой тромбопластин, который взаимодействует с белковыми факторами плазмы (7,4,10,5,2) и образует некоторое некоторое количество тромбина. В результате агрегация становится необратимой и формируется первичный или тромбоцитарный тромб. На этом кровотечение из мелких сосудов купируется.

Лабораторная оценка сосудисто-тромбоцитарного гемостаза.

При этом исследуют состояние капилляров и тромбоцитов: их количество и функцию (адгезию и агрегацию).

Длительность капиллярного кровотечения определяют после строго дозированного прокола кожи. По методу Дюке осуществляют прокол кожи ногтевой фаланги безымянного пальца, по Айви – 3 прокола (насечки) наносят на коже верхней трети предплечья при создании давления с помощью манжетки 40-50 мм рт. ст.

В норме длительность кровотечения по Дюке составляет 2-4 мин, по Айви – 1-7 мин.

Время капилярного кровотечения зависит от состояния капиляров, количества и функциональной активности тромбоцитов, способности их к адгезии и агрегации.

Практическое значение имеет удлинение времени кровотечения: при тяжелых формах неполноценности тромбоцитов и резко выраженных тромбоцитопениях, особенно значительно оно удлиняется при болезни Виллебрандта. Время кровотечения увеличивается также при заболеваниях печени, ДВС-синдроме, злокачественных опухолях, С -гиповитаминозе, гипофункции коры надпочечников, отравлении гепатотоксическими веществами и т.д.

При нарушениях свертываемости крови оно обычно остается нормальным, так как остановка кровотечения в зоне микроциркуляции обеспечивается, в основном, тромбоцитами, а не гемокоагуляцией. При некоторых коагуляционных нарушениях (тяжелых тромбо-геморрагических синдромах, значительной гипергепаринемиях) время кровотечения может удлинятся.

Укорочение – свидетельствует лишь о повышенной спастической способности капилляров

Резистентность капилляров исследуют с помощью различных проб – щипка, жгута и др.

Проба щипка – в норме после щипка складки кожи под ключицей ни сразу, ни через 24 часа не должно быть ни петехий, ни кровоподтека.

Проба жгута – у здоровых людей после сдавления плеча манжеткой тонометра (80 мм рт. ст.) в течение 5 мин петехии не образуются или их не более 10 диаметром до 1 мм (в кругу диаметром 2,5 см) – отрицательная проба.

Снижение резистентности, (положительные пробы) свидетельствует о неполноценности стенок микрососудов. Это может быть результатом инфекционно-токсического воздействия, С-гиповитаминоза, эндокринных нарушений (менструальный период, патологический климакс) и т.д. Наиболее часто положительная проба жгута отмечается у больных тромбоцитопениями и тромбоцитопатиями всех видов, при ДВС-синдроме, при активации фибринолиза, передозировке антикоагулянтов непрямого действия, при дефиците факторов протромбинового комплекса.

Количество тромбоцитов (PL, PLT)определяют с помощью фазово-контрастного микроскопирования или на автоматическом анализаторе (норма – 150-450 * 10 9 /л).

Уменьшение количества тромбоцитов может быть при геморрагическом диатезе, ДВС-синдроме, идиопатической нической пурпуре (болезнь Верльгофа), тромботической тромбоцитопенической пурпуре (болезнь Мошковица), иммунных тромбоцитопениях, остром лейкозе, болезнях накопления (Гоше, Нимана-Пика и т.д.), апластических, В12 - и фолиеводефицитных анемиях, заболеваниях печени, коллагенозе. Ряд антибактериальных, противосудорожных, мочегонных, противоревматических, противомалярийных препаратов, аналгетики, гипогликемические средства способны вызвать лекарственную тромбоцитопению.

Первичный тромбоцитоз может быть эссенциальным, а также встречается при миелопролиферативных заболеваниях, вторичный - при злокачественных новообразованиях, острой кровопотере, воспалительных процессах, железодефицитной анемии, после операций, после интенсивной физической нагрузки.

Адгезивность томбоцитов

Известны прямые и непрямые методы оценки адгезивности тромбоцитов. Прямые заключаются в подсчете тромбоцитов, фиксированных в колонке со стеклянными шариками при пропускании со стандартной скоростью определенного объема крови Непрямые основаны на установлении разницы между количеством тромбоцитов в венозной крови и крови, вытекающей из ранки на коже пальца (адгезивность in nivo). Снижение адгезивности наблюдается при ряде тромбоцитопатий и при болезни Виллебранда. Нормальные значения – 20-55 % .

Уменьшение адгезивности вплоть до 0 % наблюдается при ряде врожденных тромбоцитопатий (тромбастения Глацманна, аспириноподобный синдром, синдром Бернара-Сулье) и при болезни Виллебранда.

Агрегация тромбоцитов

Исследование способности тромбоцитов к агрегации используют для:

– диагностики наследственных аномалий тромбоцитов (сохраненной реакции освобождения – тромбастения Гланцмана; нарушенной реакцией освобождения – "аспириноподобный синдром"; болезни недостаточного пула накопления – синдром "серых тромбоцитов"; заболевания с преимущественным нарушением адгезии – болезнь Виллебранда, синдром Бернара-Сулье);

– диагностики приобретенных патологий тромбоцитов (цирроз печени, уремия, атеросклероз, ИБС, сахарный диабет, гиперлипидемии, парапротеинемии и т. д.);

– подбора дозы и оценки эффективности антиагрегантной терапии;

– оценки функциональной активности тромбоцитов при переливании тромбомассы.

Может быть спонтанная или индуцированная. Чаще используют последнюю. В качестве индукторов используют АДФ, адреналин, коллаген, бычий фибриноген, ристомицин.

Выбор агреганта зависит от цели исследования.

Для оценки тромбоопасных состояний чаще всего используют АДФ в малых дозах, для оценки антиагрегационной терапии – АДФ в более высоких дозах, иногда коллаген. При исследовании геморагических проявлений используют комплекс агрегантов: АДФ, адреналин (для оценки состояния мембранных рецепторов); ристомицин (для оценки необходимых кофакторов); АДФ, адреналин, коллаген (оценки способности тромбоцитов к реакции освобождения).

Принцип агрегации тромбоцитов основан на измерении скорости и степени уменьшения оптической плотности тромбоцитарной плазмы при перемешивании с индукторами агрегации. Это может быть оценено визуально, с помощью микроскопа а также с помощью агрегометра.

Вторичный гемостаз (макроциркуляторный, коагуляционный).

Осуществляется при кровотечении из сосудов среднего и крупного калибра. Обеспечивается свертывающей системой, которая состоит из двух звеньев - прокоагулянтного и антикоагулянтного.

Процесс плазменного свертывания крови представляет собой каскад ферментативных реакций, в котором каждый предшествующий фактор превращается в активный фермент, последовательно активирующий следующий профермент. Конечным продуктом процесса свертывания крови является фибрин-полимер - нерастворимый белок, образующий сеть, в котором задерживаются тромбоциты и другие форменные элементы крови, формируется окончательный фибрин - тромбоцитарный сгусток (гемостатический тромб). Весь процесс делят на 4 фазы:

Первая фаза -образование протромбиназы , происходит 2-мя путями - по внешнему и внутреннему механизму. Внутренний механизм запускается активацией 12-го фактора при контакте с поврежденной сосудистой стенкой. Так же принимают участие плазменные факторы 11,10,9,8,5,4, фактор Флетчера, фактор Виллебранда, протеины С и S, 3-ий тромбоцитарный фактор. Образование кровяной протромбиназы занимает основное время свертывания крови 4мин 55сек – 9мин 55сек. Внешний механизм запускается с появления в кровяном русле 3-го фактора (тканевой тромбопластин) из поврежденной сосудистой стенки (в норме в плазме он отсутствует), который при взаимодействии с 7,10,5,4 плазменными факторами образует тканевую протромбиназу. Протекает в 2-3 раза быстрее.

Вторая фаза - образование тромбина . Протромбиназа превращает протромбин в тромбин (2-2а). В этой реакции принимают участие 5,7,10 и 3-ий тромбоцитарный факторы. Продолжительность 2-5сек. Кровь продолжает сохранять жидкую консистенцию.

Третья фаза -образование фибрина , длится 2-5сек. Тромбин отщепляет от фибриногена пептиды, переводя его в фибрин-мономер. Последний полимеризуется и выпадает в виде переплетающихся нитей фибрина. Эта сеть увлекает за собой форменные элементы крови. Образуется рыхлый красный тромб. Он очень лабилен и может растворяться фибринолизином, мочевиной. Тромбин в присутствии 4-го фактора может активизировать фибриназу (13-ый фактор), которая, воздействуя на лабильный красный тромб, может уплотнять его и делать ограниченно растворимым.

Четвертая - посткоагуляционная фаза - ретракция и фибринолиз . Осуществляется системой фибринолиза, которая включает в себя плазминоген, его активаторы и ингибиторы. Плазминоген после активации превращается в плазмин. Плазмин расщепляет фибрин на отдельные фрагменты (продукты деградации фибрина), которые удаляются фагоцитарной системой. Активация плазминогена в норме происходит на фибриновом сгустке при фиксации на нем 12-го активированного фактора и прекалликреина. Активация плазминогена может индуцироваться тканевыми протеиназами, бактериальными. Выполнив свою функцию плазмин инактивируется системой ингибиторов.

Чтобы отличить транссудат от экссудата, в плевральной жидкости определяют содержание белка и активность ЛДГ и сравнивают с аналогичными показателями сыворотки. При экссудате всегда есть хотя бы один из следующих признаков (критерии Лайта):

  1. отношение содержания белка в плевральной жидкости к его содержанию в сыворотке превышает 0,5;
  2. отношение активности ЛДГ в плевральной жидкости к активности ЛДГ в сыворотке превышает 0,6;
  3. активность ЛДГ в плевральной жидкости превышает две трети ее максимальной нормальной активности в сыворотке.

Для транссудата не характерен ни один из перечисленных признаков. Предлагались и другие критерии, однако никаких преимуществ перед критериями Лайта у них не обнаружено. По данным метаанализа, все три критерия Лайта имеют сходную диагностическую ценность; выявление сразу двух или трех признаков делает диагноз более точным, но ни одна из их комбинаций не имеет преимуществ.

Транссудат

Самая частая причина плеврального выпота - сердечная недостаточность. Обычно выпот двусторонний, серозный, по биохимическим показателям соответствует транссудату. Недавно показано, что изолированная правожелудочковая сердечная недостаточность не бывает причиной плеврального выпота: он появляется только при недостаточности обоих желудочков. Лечение сердечной недостаточности диуретиками не может быть причиной превращения транссудата в экссудат. Больным с типичной клинической картиной левожелудочковой сердечной недостаточности, кардиомегалией и двусторонним выпотом на рентгенограмме плевральную пункцию можно не делать. Следует помнить, что у больных с сердечной недостаточностью может возникнуть ТЭЛА. Поэтому если появился односторонний выпот, лихорадка или плевральная боль, нужно исключать ТЭЛА и пневмонию.

Другая частая причина транссудата - цирроз печени. Асцитическая жидкость через диафрагму просачивается из брюшной полости в плевральную. Биохимические показатели плевральной и асцитической жидкости, как правило, сходны. На рентгенограмме грудной клетки определяется плевральный выпот (в 70% случаев правосторонний) при нормальных размерах сердца. У больных обычно находят асцит и другие проявления печеночной недостаточности, хотя иногда при переходе довольно большого объема жидкости в плевральную полость клинические признаки асцита исчезают.

Односторонний плевральный выпот при ТЭЛА чаще представляет собой геморрагический экссудат, но у 20% больных обнаруживают транссудат. Таким образом, исключить ТЭЛА по характеру выпота нельзя, для этого требуется дополнительное обследование.

Реже причинами транссудата бывают нефротический синдром (из-за снижения онкотического давления плазмы), уроторакс (при скоплении мочи в забрюшинном пространстве из-за повреждения или обструкции мочевых путей), перитонеальный диализ (из-за перехода диализата из брюшной полости в плевральную). При долевом и тотальном ателектазе (вследствие обструкции бронха опухолью или инородным телом) транссудат может образовываться из-за роста отрицательного давления в плевральной полости. Как правило, причина транссудата проясняется уже при сборе анамнеза.

Экссудат

Самая частая причина экссудата в плевральной полости - парапневмонический плеврит. Это распространенное осложнение бактериальной пневмонии (развивается примерно в 40% случаев). Выпот накапливается на стороне поражения. В плевральной жидкости обнаруживают большое количество нейтрофилов (более 10000 в мкл). Различают неосложненный и осложненный парапневмонический плеврит. Первый полностью излечивается антибактериальными препаратами, а второй требует дренирования плевральной полости, так как иначе приводит к хроническому плевриту и образованию бронхоплевральных свищей и плевральных спаек. Поэтому важно их дифференцировать.

Осложненный парапневмонический плеврит отличают от неосложненного по внешнему виду плевральной жидкости, результатам ее окраски по Граму, посева и биохимического исследования. Критериями осложненного парапневмонического плеврита считают эмпиему плевры (гнойный экссудат, выявление бактерий в мазках экссудата, окрашенных по Граму, или при посеве), а также рН экссудата ниже 7 или содержание глюкозы в экссудате менее 40 мг%.

Последние два критерия часто сочетаются с повышением активности ЛДГ в экссудате свыше 1000 МЕ/л, но сама по себе активность ЛДГ критерием осложненного парапневмонического плеврита не служит. Способность вызывать осложненный парапневмонический плеврит неодинакова у разных видов бактерий. Streptococcus pneumoniae часто вызывает пневмонию, но осложненный парапневмонический плеврит - редко. Напротив, если возбудитель пневмонии - грамотрицательные бактерии, Staphylococcus aureus, Streptococcus pyogenes или анаэробные бактерии, то осложненный парапневмонический плеврит развивается довольно часто. Если обнаружен осумкованный выпот, ставят диагноз осложненного парапневмонического плеврита.

Опухолевый выпот - это вторая по частоте причина экссудата в плевральной полости. Обычно он возникает при метастазах в плевру. Опухолевый выпот чаще всего обусловлен раком легкого, молочной железы и лимфомами (около 75% случаев). Иногда он бывает первым проявлением злокачественного новообразования: прогноз у таких больных крайне неблагоприятный, поскольку плевральный выпот появляется на поздних стадиях заболевания. Реже причиной плеврального выпота у онкологических больных служат метастазы в лимфоузлы средостения, ателектазы и пневмония.

При цитологическом исследовании плевральной жидкости опухолевые клетки обнаруживают в 60-80% случаев. Цитологическое подтверждение опухолевой природы выпота очень важно. Например, если у больного раком легкого опухолевых клеток в выпоте не обнаружено, операция может дать неплохие результаты, а в противном случае - бесполезна.

Третьей по частоте причиной плеврального выпота считают ТЭЛА. Плевральный выпот появляется почти у каждого второго больного ТЭЛА, примерно в 80% случаев он бывает экссудатом. Выпот обычно односторонний, иногда имеет геморрагический характер. В легких может определяться инфильтрат, но каких-либо специфичных для ТЭЛА данных анамнеза, физикального исследования, рентгенографии грудной клетки и исследований плевральной жидкости нет. Поэтому, чтобы не пропустить ТЭЛА, нужно всегда о ней помнить и больным с факторами риска или типичной клинической картиной назначать дополнительное обследование.

Причиной одностороннего плеврита и экссудата может быть туберкулезный плеврит. Его следует заподозрить у больных с преобладанием в плевральной жидкости лимфоцитов (гл. 74). Содержание глюкозы в плевральной жидкости часто бывает нормальным.

Плевральный выпот в сочетании с лихорадкой и болью в верхней части живота или нижнем отделе грудной клетки может быть проявлением поддиафрагмального абсцесса, перфорации органов брюшной полости, вирусного гепатита, абсцесса печени или селезенки и других заболеваний брюшной полости. Амебный абсцесс печени может сопровождаться правосторонним выпотом - из-за асептического воспаления (реактивный плеврит) или, чаще, прорыва абсцесса через диафрагму. Эти заболевания не всегда своевременно распознаются, потому что нередко врачи ищут причину выпота в легких и плевре. Экссудат в плевральной полости (обычно левосторонний) может быть следствием как острого, так и хронического панкреатита. В таких случаях в плевральной жидкости обнаруживают высокую активность амилазы. Если плевральный выпот (в сочетании с пневмомедиастинумом или пневмотораксом либо без них) появился после рвоты и сопровождается болью в груди и одышкой, следует заподозрить разрыв пищевода. У таких больных плевральная жидкость обычно содержит много амилазы слюны и имеет рН около 6. Кроме того, из-за попадания в плевральную полость анаэробов ротоглотки высок риск инфекции. Поэтому медлить с обследованием и лечением нельзя.

Плевральный выпот бывает при ревматических болезнях, чаще при СКВ и ревматоидном артрите. Обычно выпот при этих заболеваниях появляется поздно, когда диагноз уже известен, однако бывает и первым проявлением заболевания. Как правило, при ревматоидном артрите в плевральной жидкости заметно снижено содержание глюкозы; при физикаль-ном исследовании почти всегда находят поражение суставов. Синдром Дресслера следует заподозрить после инфаркта миокарда и операции на сердце. Синдром развивается спустя недели или месяцы после повреждения миокарда: возникают перикардит, плеврит, инфильтраты в легких, лихорадка и боль в груди. Его следует исключать у каждого больного с одно- или двусторонним плевральным выпотом, возникшим после инфаркта миокарда или операции на сердце.

Экссудат может появляться после приема лекарственных средств вследствие как лекарственного плеврита, так и лекарственного волчаночного синдрома. Плевральный выпот у больных с центральным венозным катетером может быть вызван повреждением вены. Это осложнение чаще встречается при установке венозного катетера в левую подключичную или левую яремную вены, его нужно заподозрить при гемотораксе или наличии в плевральной жидкости компонентов инфузионных растворов.

Проф. Д. Нобель

«Виды и причины плеврального выпота» - статья из раздела

В здоровом организме в серозных полостях имеется небольшое количество жидкости, увеличение которой наблюдается при патологических процессах. Выпотные жидкости подразделяются на транссудаты и экссудаты, основное (принципиальное) отличие между которыми заключается в том, что первые образуются без вовлечения в патологический процесс серозных оболочек, а вторые – с вовлечением.

Транссудат - это жидкость, скапливающаяся в серозных полостях тела в результате влияния системных факторов на образование и резорбцию жидкости, а точнее в результате нарушения гидростатического давления (на фоне увеличения проницаемости сосудов при нарушении общего и местного кровообращения) и коллоидно-осмотического давления (вследствие гипопротеинемии и/или нарушения обмена электролитов) в крови, лимфе и серозных полостях. Чаще всего транссудат образуется при следующих патологических процессах:

Повышение венозного давления при сердечно-сосудистой недостаточности, заболеваниях почек, циррозе печени (портальная гипертензия);
повышение проницаемости капиллярных сосудов, вызванное различными токсинами, повышением температуры и расстройством питания;
снижение концентрации белка в сыворотке крови (что приводит к снижению коллоидно-осмотического давления, приводящему к образованию отеков и транссудатов);
закупорка лимфатических сосудов (приводит к образованию хилезных транссудатов).

Экссудат - это жидкость, образующаяся в результате поражения серозных оболочек чаще всего из-за увеличения проницаемости расположенных в них (как правило, на фоне воспалительного процесса), а также и при нарушении лимфатического оттока из серозной полости.

Получение выпотных жидкостей (для правильной постановки клинического диагноза и оценки клинической ситуации) осуществляется при пункции серозных полостей в условиях стационара специально обученным медицинским персоналом. Выпот собирается в чистую и при необходимости стерильную посуду. Если получено большое количество выпота, то в лабораторию доставляется часть выпота, но обязательно последняя порция, так как она наиболее богата клеточными элементами. Для предотвращения свертывания выпота, что приводит к обеднению клеточными элементами, можно пользоваться антикоагулянтами (цитрат натрия, ЭДТА). Следует избегать использования в качестве антикоагулянта гепарина, так как он приводит к изменению морфологии и деструкции клеточных элементов. При проведении лабораторного исследования выпотной жидкости решается вопрос принадлежности выпота к транссудату или экссудату. При этом оцениваются физические, химические и микроскопические свойства выпота.

Экссудаты и транссудаты обладают часто различной относительной плотностью, которая измеряется с помощью ареометра (урометра). Установлено, что транссудат имеет плотность от 1,005 до 1,015 г/мл, а экссудат - выше 1,018 г/мл. В транссудате и экссудате различная концентрация общего белка, которая определяется с помощью метода с использованием 3% раствора сульфосалициловой кислоты. Поскольку обычно концентрация белка достаточно высокая, то рекомендуется предварительно развести выпотную жидкость в сто раз. В транссудате содержится белок в концентрации от 5 до 25 г/л. В экссудате концентрация белка обычно более 30 г/л.

Также в экссудате и транссудате различное содержание белковых фракций. Поэтому, рассчитав альбуминово-глобулиновый коэффициент, можно также дифференцировать выпотные жидкости. Альбуминово-глобулиновый коэффициент в диапазоне от 2,5 до 4,0 характерен для транссудата. Альбуминово-глобулиновый коэффициент в диапазоне от 0,5 до 2,0 характерен для экссудата.

Для отличия транссудата от экссудата также используют пробу Ривальта (Rivalta). В цилиндр объемом 100 - 150 мл наливают 100 мл дистиллированной воды, подкисляют ее 2 - 3 каплями концентрированной уксусной кислоты. Затем добавляют 1 - 2 капли исследуемой жидкости. Если образующееся при добавлении выпотной жидкости беловатое облачко (напоминает дым от папиросы, который тянется за падающей каплей) опускается до дна цилиндра, проба положительная. Если помутнения не образуется, или появляется слабая полоска, которая быстро исчезает (2 - 3 минуты), то проба считается отрицательной. Проба Ривальта основана на том, что в выпотных жидкостях содержится соединение глобулиновой природы серомуцин, который дает положительную пробу (то есть происходит денатурация этого белка) со слабым раствором уксусной кислоты. Также в одном из исследований было установлено, что рН реакционной среды определяет, будет ли проба положительной или нет, было показано, что если рН выше 4,6, то проба Ривальта, даже если она была положительной, становится отрицательной. Были определены белки, которые участвуют в пробе Ривальта. Эта группа белков относится системе белков острой фазы: С-реактивный белок, 1 -антитрипсин, 1-кислый гликопротеин, гаптоглобин, трансферрин, церулоплазмин, фибриноген, гемопексин.

При исследовании физических свойств выпотной жидкости определяют цвет, прозрачность, консистенцию. Цвет и прозрачность выпотной жидкости зависят от содержания в ней белка и клеточных элементов. Консистенция зависит от наличия и количества муцина и псевдомуцина. По макроскопическим свойствам и микроскопической картине различают серозные, серозно-гнойные, гнойные, гнилостные, геморрагические, хилезные, хилусподобные, холестериновые выпоты.

Серозные выпоты могут быть как транссудатами, так и экссудатами. Они бывают прозрачные иногда мутные из-за примеси фибрина и клеточных элементов (в этом случае говорят о серозно-фибринозных экссудатах), окрашены в желтоватый цвет различной интенсивности. Микроскопически в серозно-фибринозных экссудатах определяются большое количество лимфоцитов. Такие выпоты наблюдаются при различной патологии, например при туберкулезе, ревматизме, сифилисе и т.д. Серозно-гнойные, гнойные экссудаты мутные, желтовато-зеленые с обильным, рыхлым осадком. Гнойные выпоты наблюдаются при эмпиеме плевры, перитонитах и др. Гнилостные экссудаты мутные, серо-зеленого цвета с резким гнилостным запахом они характерны для гангрены легкого и других процессов, сопровождающихся распадом ткани.

Геморрагические экссудаты мутные, красноватого или буровато-коричневого цвета. При проведении микроскопии в геморрагических экссудатах отмечается большое содержание измененных или неизмененных эритроцитов, что зависит от периода заболевания. Геморрагические экссудаты часто наблюдаются как при новообразованиях, так и при заболеваниях неопухолевой природы, например при травмах, инфарктах легкого, геморрагических диатезах. Хилезные экссудаты мутные, молочного цвета при добавлении эфира просветляются. Они содержат мелкие жировые капли и наблюдаются при разрушении крупных лимфатических сосудов при травмах, абсцессах, опухолях и других патологических состояниях. При этом лимфа из поврежденных лимфатических сосудов попадает в серозную полость и определяет особенность физических, химических и микроскопических свойствах выпотной жидкости.

Хилусподобные экссудаты мутные, имеют молочный цвет и образуются при обильном распаде клеток с признаками жировой дистрофии. Добавление эфира не просветляет либо частично просветляет хилусподобные экссудаты. Такой выпот наблюдается при саркоидозе, туберкулезе, новообразованиях, атрофическом циррозе печени. Холестериновые экссудаты густые, мутные с желтовато буроватым цветом имеют перламутровый блеск. Микроскопически отмечается большое содержание лейкоцитов, кристаллов холестерина, жирных кислот и гематоидина. Подобные экссудаты образуются при осумковывании жидкостей в серозных полостях при хроническом протекании воспалительного процесса и наблюдаются при туберкулезе, злокачественных новообразованиях.

При проведении биохимического исследования выпотной жидкости необходимо одновременно производить забор венозной крови для определения градиента сыворотка/выпотная жидкость для ряда биохимических показателей. Химические свойства серозных жидкостей зависят от биохимических показателей сыворотки крови. Низкомолекулярные соединения в серозных жидкостях находятся в концентрациях близких к сывороточным, концентрация же высокомолекулярных соединений ниже в выпотных жидкостях, чем в сыворотке.

В выпотных жидкостях возможно определение любого биохимического показателя, который определяется в сыворотке крови. Биохимические показатели определяют после центрифугирования выпотной жидкости. Для дифференцировки транссудатов и экссудатов имеет значение отношения биохимических показателей выпотной жидкости к таковым в сыворотке крови (см. таблицу ). Современный метод для разделения выпотных жидкостей на транссудат или экссудат включает исследование концентрации общего белка и активности лактатдегидрогеназы (ЛДГ) в выпотной жидкости и сыворотке крови пациента ( ).

Концентрация холестерина также отличается в транссудатах и экссудатах. Транссудаты содержат более низкую концентрацию холестерина, чем экссудаты. В экссудатах при злокачественных новообразованиях концентрация холестерина превышает 1,6 ммоль/л. Концентрация глюкозы в серозной жидкости совпадает с ее концентрацией в сыворотке крови. Уровень глюкозы в экссудате определяется гликолитическими свойствами микробов и лейкоцитов. Уровень глюкозы снижается в выпотных жидкостях при новообразованиях и может отражать активность опухолевого процесса. Очень низка концентрация глюкозы в экссудате является плохим прогностическим признаком. Низкий уровень лактата в выпотной жидкости указывает на неинфекционную этиологию процесса (в норме концентрация лактата в серозной жидкости составляет 0,67 - 5,2 ммоль/л). При злокачественных новообразованиях в выпотной жидкости наблюдается высокая концентрация лактата.

Микроскопическое исследование выпотных жидкостей включает исследование нативных препаратов, подсчет цитоза в камере (при необходимости) и исследование окрашенных препаратов для дифференцировки клеточных элементов. При микроскопическом исследовании выпотной жидкости выявляют клеточные и неклеточные элементы. Среди клеточных элементов обнаруживают клетки крови (эритроциты, лейкоциты, гистоицитарные элементы), мезотелиоциты, клетки злокачественных новообразований. Среди неклеточных элементов обнаруживают клеточный детрит (осколки ядер, цитоплазмы и т.д.), капли жира, кристаллы (холестерина, гематоидина, Шарко-Лейден)а. В транссудатах в отличие от экссудатов микроскопически выявляются преимущественно лимфоциты и мезотелиоциты.

Исследование нативных препаратов имеет ориентировочный характер. Можно обнаружить и идентифицировать эритроциты, лейкоциты, опухолевые клетки, мезотелиальные клетки, кристаллические образования. Четкая дифференцировка лейкоцитов, гистиоцитарных элементов, а также мезотелиальных и опухолевых клеток возможна лишь в окрашенных препаратах (исследование выпотных жидкостей в окрашенных препаратах является основным методам микроскопического исследования). Количественное определение содержания клеточных элементов в выпотной жидкости осуществляется в камере Горяева. Для разведения выпота при необходимости пользуются изотоническим раствором хлорида натрия. При необходимости лизиса эритроцитов пользуются гипотоническим раствором хлорида натрия. Определение цитоза может быть использовано для мониторирования проводимого лечения и контроля его эффективности.

Мезотелиоциты - это клетки мезотелия, выстилающего серозную оболочку. Они очень реактивны. Мезотелиоциты могут присутствовать в препарате единичными или в виде скоплений. При патологических процессах могут выявляться дегенеративные, дистрофические и пролиферативные изменения мезотелиальных клеток. Мезотелиоцит имеет диаметр 12 - 30 мкм, округлую или овальную форму, ядро расположено центрально либо слегка эксцентрично, хроматин в ядре расположен равномерно, имеет мелкозернистую структуру, цитоплазма широкая, имеющая цвет от нежно голубого до синего. Клетки злокачественных ново- образований в выпотной жидкости обнаруживаются при первичном (мезотелиоме) или вторичном (прорастание или метастазирование из других органов и тканей) поражении серозной оболочки. В большинстве случаев вопрос о первичном или вторичном поражении серозных оболочек опухолевым процессом решить трудно. Достоверным для диагноза злокачественного новообразования является обнаружение комплексов клеток с выраженными признаками злокачественности. Для подтверждения характера неопластического процесса необходимо заключение цитолога.

Ультрафильтрат

плазмы

Трансудат

Экссудат

Плазма

Сосудистая проницаемость

Нормальная

Нормальная

Повышенная

Типы белков

Альбумины

Альбумины

Нет (фибриноген)

Относительная плотность

Воспаления

При остром воспалении наблюдается немедленное (но реверсивное) увеличение проницаемости венул и капилляров, благодаря активному сокращению филаментов актина в эндотелиальных клетках, приводящее к расширению межклеточных пор. К такому же результату может приводить прямое повреждение эндотелиальных клеток токсическими агентами. Через сосуды с нарушенной проницаемостью могут проникать большие количества жидкости и крупномолекулярные белки. Эти изменения проницаемости вызываются различными химическими медиаторами (табл. 1).

Экссудация жидкости: переход большого количества жидкости из кровотока в интерстициальную ткань вызывает припухлость (воспалительный отек) ткани. Увеличение перехода жидкости из микроциркуляторного русла в ткани из-за увеличения сосудистой проницаемости называется экссудацией . Состав экссудата приближается к составу плазмы (табл. 2); он содержит большое количество белков плазмы, включая иммуноглобулины, комплемент и фибриноген, ввиду того, что эндотелий с повышенной проницаемостью больше не предотвращает проникновение в ткани этих больших молекул. Фибриноген при остром воспалительном экссудате быстро преобразуется в фибрин под влиянием тромбопластинов тканей. Фибрин может обнаруживаться микроскопически в экссудате в виде розовых нитей или пучков. Макроскопически фибрин наиболее хорошо виден на воспаленной серозной оболочке, поверхность которой изменяется от нормальной блестящей до шероховатой, желтоватой, покрытой пленкой и коагулированными белками.

Экссудацию необходимо отличать от транссудации (табл. 2). Транссудация - это процесс увеличенного перехода жидкости в ткани через сосуды с нормальной проницаемостью. Сила, под влиянием которой происходит переход жидкости из кровотока в ткани, обусловлена увеличением гидростатического давления или уменьшением осмотического давления коллоидов плазмы. Транссудат имеет состав, аналогичный составу ультрафильтрата плазмы. В клинической практике идентификация отечной жидкости (транссудат или экссудат) имеет большую диагностическую ценность, так как она обеспечивает определение причин нарушений, например, при исследовании перитонеальной жидкости (при асците).

Экссудация обеспечивает снижение активности повреждающего агента путем:

Разведения его; - увеличения оттока лимфы; - наводнения плазмой, содержащей многочисленные защитные белки типа иммуноглобулинов и комплемента.

Увеличение лимфатического дренажа способствует переносу повреждающих агентов в регионарные лимфатические узлы, облегчая таким образом защитный иммунный ответ. Иногда при заражении вирулентными микроорганизмами этот механизм может стать причиной их распространения и возникновения лимфангита и лимфаденита.

Клеточные реакции:

Типы вовлеченных клеток: острое воспаление характеризуется активной эмиграцией воспалительных клеток из крови в область повреждения. Нейтрофилы (полиморфноядерные лейкоциты) доминируют в ранней стадии (в первые 24 часа). После первых 24-48 часов в очаге воспаления появляются фагоцитирующие клетки макрофагальной системы и иммунологически активные клетки типа лимфоцитов и плазматических клеток. Однако нейтрофилы остаются преобладающим типом клеток в течение нескольких дней.

Краевое стояние нейтрофилов: в нормальном кровеносном сосуде клеточные элементы сосредоточены в центральном осевом потоке, отделяясь от эндотелиальной поверхности зоной плазмы (рис. 3). Это разделение зависит от нормального тока крови, которое возникает под действием физических законов, влияние которых приводит к накоплению самых тяжелых клеточных частиц в центре сосуда. Так как скорость кровотока в расширенных сосудах при остром воспалении уменьшена, распределение клеточных элементов нарушается.

Эритроциты формируют большие агрегаты (“монетный столбик” из эритроцитов ) (так называемый “слажд”-феномен).

Лейкоциты перемещаются к периферии и вступают в контакт с эндотелием (маргинация, краевое стояние), на котором многие из них адгезируются . Это происходит в результате увеличения экспрессии (появления на поверхности клеток) различных молекул адгезии клеток (САМ , cell adhesion molecules) на лейкоцитах и эндотелиальных клетках. Например, экспрессия бета 2 интегринов (комплекс CD11-CD18), которые включают в себя лейкоцитарный функциональный антиген-1 (LFA-1, leukocyte function antigen-1), увеличивается из-за влияния таких хемотаксических факторов как C5a ("анафилатоксин”) комплемента, и лейкотриена В 4 ЛТB 4 . Синтез комплементарных CAM-молекул на эндотелиальных клетках аналогично регулируется действиями интерлейкина-1 (IL-1) и TNF (фактор некроза опухоли (tumor necrosis factor), который выявляется и вне опухолей); они включают ICAM 1, ICAM 2 и ELAM-1 (эндотелиальная молекула адгезии лейкоцитов, endothelial leukocyte adhesion molecule).

Эмиграция нейтрофилов: адзегированные нейтрофилы активно покидают кровеносные сосуды через межклеточные щели и проходят через базальную мембрану, попадая в интерстициальное пространство (эмиграция ). Проникновение через стенку сосуда длится 2-10 минут; в интерстициальной ткани нейтрофилы двигаются со скоростью до 20 мкм/мин.

Хемотаксические факторы (таблица 1): активная эмиграция нейтрофилов и направление движения зависят от хемотаксических факторов. Факторы комплемента C3a и C5a (образующие в комплексе анафилатоксин ) - мощные хемотаксические агенты для нейтрофилов и макрофагов, как и лейкотриен LTB4. Взаимодействие между рецепторами на поверхности нейтрофилов и этими "хемотаксинами" увеличивает подвижность нейтрофилов (путем увеличения притока ионов Ca 2+ в клетку, который стимулирует сокращение актина) и активирует дегрануляцию. Различные цитокины оказывают активирующую роль в процессах развития иммунного ответа.

Эритроциты попадают в воспаленную область пассивно, в отличие от активного процесса эмиграции лейкоцитов. Они выталкиваются из сосудов гидростатическим давлением через расширенные межклеточные щели вслед за эмигрирующими лейкоцитами (диапедез ). При тяжелых повреждениях, связанных с нарушением микроциркуляции, в очаг воспаления может попадать большое количество эритроцитов (геморрагическое воспаление).

Иммунный фагоцитоз (В) намного эффективнее неспецифического (А). Нейтрофилы имеют на своей поверхности рецепторы к Fc-фрагменту иммуноглобулинов и фактрорам комплемента. Макрофаги обладают такими же свойствами.

1. Распознавание - первым этапом фагоцитоза является распознавание повреждающего агента фагоцитарной клеткой, которое происходит или непосредственно (при распознавании больших, инертных частиц), или после того, как агент покрывается иммуноглобулинами или факторами комплемента (C3b) (опсонизация ). Облегченный опсонином фагоцитоз - механизм, участвующий в иммунном фагоцитозе микроорганизмов. IgG и C3b - эффективные опсонины. Иммуноглобулин, который обладает специфической реактивностью по отношению к повреждающему агенту (специфическое антитело) - наиболее эффективный опсонин. C3b образуется непосредственно в очаге воспаления путем активации системы комплемента. На ранних стадиях острого воспаления, прежде чем развивается иммунный ответ, доминирует неиммунный фагоцитоз, но по мере развития иммунного ответа он замещается более эффективным иммунным фагоцитозом.

2. Поглощение - после распознавания нейтрофилом или макрофагом чужеродная частица поглощается фагоцитарной клеткой, в которой формируется ограниченная мембраной вакуоль, названная фагосомой, которая при слиянии с лизосомами образует фаголизосому.

3. Разрушение микроорганизмов - когда повреждающим агентом является микроорганизм, он должен быть убит, прежде чем произойдет гибель фагоцитирующей клетки. В процессе разрушения микроорганизмов участвуют несколько механизмов.

ПРОЛИФЕРАЦИЯ

Пролиферация (размножение) клеток является завершающей фазой воспаления. В очаге воспаления наблюдается пролиферация камбиальных клеток соединительной ткани, В- и Т-лимфоцитов, моноцитов, а также клеток местной ткани, в которой разворачивается процесс воспаления - мезотелиальных, эпителиальных клеток. Параллельно наблюдается клеточная дифференцировка и трансформация. В-лимфоциты дают начало образованию плазматических клеток, моноциты - гистиоцитам и макрофагам. Макрофаги могут быть источником образования эпителиоидных и гигантских клеток (клетки инородных тел и клетки типа Пирогова-Лангханса).

Камбиальные клетки соединительной ткани в дальнейшем могут дифференцироваться в фибробласты, продуцирующие белок коллаген и гликозаминогликаны. Вследствие этого очень часто в исходе воспаления разрастается волокнистая соединительная ткань.

РЕГУЛЯЦИЯ ВОСПАЛЕНИЯ

Регуляция воспаления осуществляется с помощью гормональных, нервных и иммунных факторов.

Известно, что некоторые гормоны усиливают воспалительную реакцию - это, так называемые,

провоспалительные гормоны (минералокортикоиды, соматотропный гормон гипофиза, гипофизарный тиреостимулин, альдостерон). Другие, наоборот, уменьшают ее. Это противовоспалительные гормоны , такие как глюкокортикоиды и адренокортикотропный гормон (АКТГ) гипофиза. Их антивоспалительный эффект успешно используется в терапевтической практике. Эти гормоны блокируют сосудистый и клеточный феномен воспаления, ингибируют подвижность лейкоцитов, усиливают лимфоцитолиз.

Холинергические вещества , стимулируя выброс медиаторов воспаления, действуют подобно провоспалительным гормонам, а адренергические , угнетая медиаторную активность, ведут себя подобно противовоспалительным гормонам.

На выраженность воспалительной реакции, темпы ее развития и характер влияет состояние иммунитета. Особенно бурно воспаление протекает в условиях антигенной стимуляции (сенсибилизации). В таких случаях говорят об иммунном, или аллергическом, воспалении.