Атмосферная акустика изучает, главным образом, распространение в свободной атмосфере звука. Опытом установлено, что по ветру звук распространяется значительно дальше, чем против направления ветра или в безветрие. Это объясняется переносом звука ветра (известно, что скорость перемещения воздуха при ветре незначительна относительно скорости звука), и тем самым скорость перемещения воздуха над самой поверхностью земли заметно меньше, чем на определенной высоте. В связи с этим звуковые волны по направлению ветра несколько наклоняются верхними частями вперед, а потому звук прижимается к земле, чем создается усиление звука. Идущие против ветра звуковые волны отлетают, а потому звуковой луч отходит от земли.

©

Вообще искажение хода звукового луча, вследствие различной звуковой преломляемости его в воздухе, вызванной изменениями температуры и скорости ветра на различных высотах, может привести к тому, что источник звука окажется окруженным зоной молчания, далее которой звук снова .

Атмосферная акустика в свободном воздухе

Распространение звука в свободном воздухе имеет ряд особенностей. Благодаря чему в тепловой проводимости и вязкости в атмосфере, поглощения звуковой волны будут более выше частоты по звуку и ниже плотности в воздухе. Следовательно, эти резкие звуки или взрывы становятся глуше на больших расстояниях. В уловимых звуках на очень низких частотах (известные, как инфразвук), имеют периоды от нескольких секунд до нескольких минут, которые не сильно ослаблены и могут быть распространены на тысячи километров и даже могут обогнуть землю несколько раз. Это нужно для возможности обнаружения ядерных взрывов, которые являются мощным источником для таких волн.

Это важные проблемы в атмосферной акустике, связанные с явлениями, которые происходят во время распространения звука в атмосфере, которая из с акустической точки зрения является перемещением неоднородной среды. Температуры и плотности в атмосфере уменьшаются с увеличением высоты; на больших высотах температура снова поднимается. При этих регулярных неоднородностях они являются вариациями по температуре и от ветра, которые зависят от метеорологических условий, а также, как случайных турбулентных пульсации из различных .

Поскольку скорость ветра будет контролироваться с помощью воздушной температуры, то звук «осуществляется» по ветру, то что гетерогенность упомянутая имеет более сильное влияние на звуковом распространении. Гибкие звуковые лучи-преломления которые происходят от звука, в результате, чего звук-луч отклоняется и может быть возвращен к земной поверхности, таким образом, образуя акустические слышимости зоны и зоны молчания; рассеивание звука и затухание происходят в турбулентных аномалиях, сильном поглощении на больших высотах и т.д.

Атмосферная акустика является необходимым для решения в сложной обратной задачи в акустическом звучании из в атмосфере. Распределение в температуре и по ветру на больших высотах будет получено из измерений, но по времени и направления по прибытию из звуковых волн, созданных с помощью наземного уровня взрыва или от взрыва.

Для получения исследования о турбулентности, нужно знать температуру и скорость ветра которые определяются путем измерения распространение времени звука небольшими расстояниями; чтобы достичь в требуемой точности ультразвуковые частоты, которые будут .

Промышленный шум

Проблема распространения промышленного шума, в частности, которые происходят из ударных волн, производимых с помощью движения сверхзвукового реактивного самолета, уже стала чрезвычайно важной. Если атмосферные условия являются благоприятными для фокусировки этих волн, то давление на первом уровне может достигать значения, которые являются опасными для здоровья человека.

Различные звуки природного происхождения наблюдаются также в атмосфере. Длинные раскаты грома происходят из — за большой длины в виде молнии разряда и потому, когда звуковые волны будут преломляться они распространяются по разным путям и прибывают с различными задержками. Некоторые геофизические явления, такие как полярные сияния, магнитные бури, сильные землетрясения, ураганы, и морские волны являются источниками звука, в частности, инфразвуковых волн. Их исследование является важным не только для геофизики, к примеру, для своевременных штормовых предупреждений. Различные звуковые шумы, которые производятся либо путем столкновения вихрей с различными объектами (свист из за ветра) или от колебаний некоторых объектов в воздушном потоке (жужжание проводов, шелесте листьев, и так далее).

Особенно замечательны явления, наблюдаемые при громадных взрывах, какой был, например, в Москве в 1920 году. Звук взрыва был слышен на 50 км, затем на 50 и до 160 км была зона молчания. Далее звук был снова слышен. Подобные явления объясняются отражением звука от границы, где воздух начинает заметно отсутствовать, и начинается так называемая водородная атмосфера. Вопросы эти еще окончательно не .

Явление эха, которое бывает нередко многократным, объясняется отражением звука от больших поверхностей, например, лес, горы, стены большого здания и тому подобных. Для наличия более или менее правильного отражения волн всякого вида (звуковые, световые, на поверхности воды) необходимо, чтобы шероховатости отражающей поверхности имели размеры, малые по сравнению с длиной волны попадающей на них энергии, а размеры самой отражающей поверхности были велики по сравнению с длиной волны. Вот почему стена частых и густых деревьев хорошо отражает звуки, длина волн которых, обычно, около 0,5-2 м.

Атмосферная акустика предоставляет знания и инструменты для описания распространения звука в атмосфере. Для решения проблем с наружным шумом, в частности шума от воздушных судов, дорожных транспортных средств, поездов и ветровых турбин, распространение звука является важным связующим звеном между источником и приемником. Это часть функциональной цепи между шумовыми эффектами и шумовыми эффектами для людей (например, нарушение сна, раздражение, нарушение здоровья). Хотя современные инструменты прогнозирования шума регулируются в национальных и международных стандартах (например, ISO) научные модели распространения звука намного сложнее и способны детально описывать метеорологические и топографические влияния. Однако эти модели довольно сложны с точки зрения вычислительных ресурсов как по времени, так и по хранению. Поэтому использование этих моделей ограничено научными применениями (исследованиями процессов и отношений, например, для получения параметризации) и выбранными практическими проблемами.

Тем не менее, наука атмосферная акустика имеет по-прежнему большой потенциал для новых областей применения и дальнейшего развития. Доступность более мощных компьютеров в будущем откроет применения для больших диапазонов и более высоких частот. Еще одно расширение применимости ожидается от введения усовершенствованных численных .

Часть материала переведена из: https://encyclopedia2.thefreedictionary.com/Atmospheric+Acoustics

https://link.springer.com/chapter/10.1007/978-3-642-30183-4_13

Новую музыку в хорошем качестве скачать здесь

Если вы являетесь производителем, импортером, дистрибьютором или агентом в области воспроизведения звука и хотели бы связаться с нами, пожалуйста, свяжитесь со мной в

Звук представляет собой звуковые волны, которые вызывают колебания мельчайших частиц воздуха, других газов, а также жидких и твердых сред. Звук может возникать только там, где есть вещество, не важно, в каком агреатном состоянии оно находится. В условиях вакуума, где отсутствует какая-либо среда, звук не распространяется, потому что там отсутствуют частицы, которые и выступают распространителями звуковых волн. Например, в космосе. Звук может модифицироваться, видоизменяться, превращаясь в иные формы энергии. Так, звук, преобразованный в радиоволны или в электрическую энергию, можно передавать на расстояния и записывать на информационные носители.

Звуковая волна

Движения предметов и тел практически всегда становятся причиной колебаний окружающей среды. Не важно, вода это или воздух. В процессе этого частицы среды, которой передаются колебания тела, также начинают колебаться. Возникают звуковые волны. Причем движения осуществляются в направлениях вперед и назад, поступательно сменяя друг друга. Поэтому звуковая волна является продольной. Никогда в ней не возникает поперечного движения вверх и вниз.

Характеристики звуковых волн

Как и любое физическое явление, они имеют свои величины, при помощи которых можно описать свойства. Основные характеристики звуковой волны - это ее частота и амплитуда. Первая величина показывает, какое количество волн образуется за секунду. Вторая определяет силу волны. Низкочастотные звуки имеют низкие показатели частоты, и наоборот. Частота звука измеряется в Герцах, и если она превышает 20 000 Гц, то возникает ультразвук. Примеров низкочастотных и высокочастотных звуков в природе и окружающем человека мире достаточно. Щебетание соловья, раскаты грома, грохот горной реки и другие - это все разные звуковые частоты. Значение амплитуды волны напрямую зависит от того, насколько звук громок. Громкость же, в свою очередь, уменьшается по мере удаления от источника звука. Соответственно, и амплитуда тем меньше, чем дальше от эпицентра находится волна. Другими словами, амплитуда звуковой волны уменьшается при удалении от источника звука.

Скорость звука

Этот показатель звуковой волны находится в прямой зависимости от характера среды, в которой она распространяется. Значимую роль здесь играют и влажность, и температура воздуха. В средних погодных условиях скорость звука составляет приблизительно 340 метров в секунду. В физике существует такое понятие, как сверхзвуковая скорость, которая всегда по значению больше, чем скорость звука. С такой скоростью распространяются звуковые волны при движении самолета. Самолет движется со сверхзвуковой скоростью и даже обгоняет звуковые волны, создаваемые им. Вследствие давления, постепенно увеличивающегося позади самолета, образуется ударная звуковая волна. Интересна и мало кому известна единица измерения такой скорости. Называется она Мах. 1 Мах равен скорости звука. Если волна движется со скоростью 2 Маха, значит, она распространяется в два раза быстрее, чем скорость звука.

Шумы

В повседневной жизни человека присутствуют постоянные шумы. Измеряется уровень шума в децибелах. Движение автомобилей, ветер, шелест листвы, переплетение голосов людей и другие звуковые шумы являются нашими спутниками ежедневно. Но к таким шумам слуховой анализатор человека имеет возможность привыкать. Однако существуют и такие явления, с которыми даже приспособительные способности человеческого уха не могут справиться. Например, шум, превышающий 120 дБ, способен вызвать ощущение боли. Самое громкое животное - синий кит. Когда он издает звуки, его можно услышать на расстоянии более 800 километров.

Эхо

Как возникает эхо? Здесь все очень просто. Звуковая волна имеет способность отражаться от разных поверхностей: от воды, от скалы, от стен в пустом помещении. Эта волна возвращается к нам, поэтому мы слышим вторичный звук. Он не такой четкий, как первоначальный, поскольку некоторая энергия звуковой волны рассеивается при движении до преграды.

Эхолокация

Отражение звука используется в различных практических целях. Например, эхолокация. Она основана на том, что с помощью ультразвуковых волн можно определить расстояние до объекта, от которого эти волны отражаются. Расчеты осуществляются при измерении времени, за которое ульразвук доберется до места и вернется обратно. Способностью к эхолокации обладают многие животные. Например, летучие мыши, дельфины используют ее для поиска пищи. Другое применение эхолокация нашла в медицине. При исследованиях с помощью ультразвука образуется картинка внутренних органов человека. В основе такого метода находится то, что ультразвук, попадая в отличную от воздуха среду, возвращается обратно, формируя таким образом изображение.

Звуковые волны в музыке

Почему музыкальные инструменты издают те или иные звуки? Гитарные переборы, наигрыши пианино, низкие тона барабанов и труб, очаровывающий тонкий голосок флейты. Все эти и многие другие звуки возникают по причине колебаний воздуха или, другими словами, из-за появления звуковых волн. Но почему звучание музыкальных инструментов настолько разнообразное? Оказывается, это зависит от некоторых факторов. Первое - это форма инструмента, второе - материал, из которого он изготовлен.

Рассмотрим это на примере струнных инструментов. Они становятся источником звука, когда на струны воздействуют касанием. Вследствие этого они начинают производить колебания и посылать в окружающую среду разные звуки. Низкий звук какого-либо струнного инструмента обусловлен большей толщиной и длиной струны, а также слабостью ее натяжения. И наоборот, чем сильнее натянута струна, чем она тоньше и короче, тем более высокий звук получается в результате игры.

Действие микрофона

Оно основано на преобразовании энергии звуковой волны в электрическую. В прямой зависимости при этом находятся сила тока и характер звука. Внутри любого микрофона расположена тонкая пластина, выполненная из металла. При воздействии звуком она начинает совершать колебательные движения. Спираль, с которой соединена пластинка, также вибрирует, в результате чего возникает электрический ток. Почему он появляется? Это связано с тем, что в микрофоне также встроены магниты. При колебаниях спирали между его полюсами и образуется электрический ток, который идет по спирали и далее - на звуковую колонку (громкоговоритель) или к технике для записи на информационный носитель (на кассету, диск, компьютер). Кстати, аналогичное строение имеет микрофон в телефоне. Но как действуют микрофоны на стационарном и мобильном телефоне? Начальная фаза одинакова для них - звук человеческого голоса передает свои колебания на пластинку микрофона, далее все по описанному выше сценарию: спираль, которая при движении замыкает два полюса, создается ток. А что дальше? Со стационарным телефоном все более-менее понятно - как и в микрофоне, звук, преобразованный в электрический ток, бежит по проводам. А как же обстоит дело с сотовым телефоном или, например, с рацией? В этих случаях звук превращается в энергию радиоволн и попадает на спутник. Вот и все.

Явление резонанса

Иногда создаются такие условия, когда амплитуда колебаний физического тела резко возрастает. Это происходит вследствие сближения значений частоты вынужденных колебаний и собственной частоты колебаний предмета (тела). Резонанс может приносить как пользу, так и вред. Например, чтобы вызволить машину из ямки, ее заводят и толкают взад-вперед для того, чтобы вызвать резонанс и придать автомобилю инерцию. Но бывали и случаи негативного последствия резонанса. К примеру, в Петербурге приблизительно сто лет назад рухнул мост под синхронно шагающими солдатами.

Когда мы думаем о технологиях будущего, мы часто не замечаем поле, в котором происходят невероятные достижения: акустику. Звук на поверку оказывается одним из фундаментальных строительных блоков будущего. Наука использует его, чтобы творить невероятные вещи, и можете быть уверены, в будущем мы услышим и увидим намного больше.


Команда ученых из Университета Пенсильвании при поддержке Ben and Jerry’s создала холодильник, который охлаждает еду с помощью звука. В его основе лежит принцип того, что звуковые волны сжимают и расширяют воздух вокруг себя, что нагревает и охлаждает его соответственно. Как правило, звуковые волны меняют температуру не больше чем на 1/10000 градуса, но если газ будет под давлением в 10 атмосфер, эффекты будут значительно сильнее. Так называемый термоакустический холодильник сжимает газ в охлаждающей камере и взрывает его с помощью 173 децибел звука, генерируя тепло. Внутри камеры серия металлических пластин на пути звуковых волн поглощает тепло и возвращает его в теплообменную систему. Тепло удаляется, а содержимое холодильника охлаждается.

Эта система была разработана как более экологичная альтернатива современным холодильникам. В отличие от традиционных моделей, которые используют химические хладагенты в ущерб атмосфере, термоакустический холодильник отлично работает с инертными газами вроде гелия. Поскольку гелий просто покидает атмосферу, если вдруг оказывается в ней, новая технология будет экологичнее любой другой на рынке. По мере развития этой технологии, ее дизайнеры надеются, что термоакустические модели в конечном счете обойдут традиционные холодильники по всем пунктам.

Ультразвуковая сварка


Ультразвуковые волны используются для сварки пластмасс с 1960-х годов. В основе этого метода лежит сжимание двух термопластичных материалов на вершине особого приспособления. Через раструб затем подаются ультразвуковые волны, которые вызывают вибрации в молекулах, что, в свою очередь, приводит к трению, генерирующему тепло. В конечном итоге два куска свариваются вместе равномерно и прочно.

Как и многие технологии, эта была обнаружена случайно. Роберт Солофф работал над ультразвуковой технологией герметизации и случайно коснулся зондом диспенсера скотча на столе. В итоге две части диспенсера спаялись вместе, а Солофф понял, что звуковые волны могут огибать углы и бока жесткого пластика, достигая внутренних частей. После открытия Солофф и его коллеги разработали и запатентовали метод ультразвуковой сварки.

С тех пор ультразвуковая сварка нашла широкое применение во многих отраслях промышленности. От подгузников до автомобилей, этот метод повсеместно используется для соединения пластмасс. В последнее время экспериментируют даже с ультразвуковой сваркой швов на специализированной одежде. Компании вроде Patagonia и Northface уже используют сварные швы в своей одежде, но только прямые, и выходит очень дорого. В настоящее время самым простым и универсальным методом по-прежнему остается ручное шитье.

Кража информации о кредитках


Ученые нашли способ передавать данные с компьютера на компьютер, используя только звук. К сожалению, этот способ также оказался эффективным в передаче вирусов.

Специалисту по безопасности Драгошу Руйу пришла эта идея после того, как он заметил нечто странное со своим MacBook Air: после установки OS X его компьютер спонтанно загрузил кое-что еще. Это был весьма мощный вирус, который мог удалять данные и вносить изменения по собственному желанию. Даже после удаления, переустановки и перенастройки всей системы проблема оставалась. Наиболее правдоподобное объяснение бессмертия вируса было таковым, что он проживал в BIOS и оставался там, несмотря на любые операции. Другая, менее вероятная теория была таковой, что вирус использовал высокочастотные передачи между динамиками и микрофоном для управления данным.

Эта странная теория казалась невероятной, но была доказана хотя бы в плане возможности, когда Германский институт нашел способ воспроизвести этот эффект. На основе разработанного для подводной связи программного обеспечения ученые разработали прототип вредоносной программы, которая передавала данные между неподключенными к Сети ноутбуками, используя их динамики. В тестах ноутбуки могли сообщаться на расстоянии до 20 метров. Диапазон можно было расширить, связав зараженные устройства в сеть, подобно ретрансляторам Wi-Fi.

Хорошие новости в том, что эта акустическая передача происходит крайне медленно, достигая скорости в 20 бит в секунду. Хотя этого недостаточно для передачи больших пакетов данных, этого достаточно, чтобы передавать информацию вроде нажатия клавиш, паролей, номеров кредитных карт и ключей шифрования. Поскольку современные вирусы умеют делать все это быстрее и лучше, маловероятно, что новая акустическая система станет популярной в ближайшем будущем.

Акустические скальпели

Врачи уже используют звуковые волны для медицинских процедур вроде УЗИ и разрушения камней в почках, но ученые из Университета штата Мичиган создали акустический скальпель, точность которого позволяет отделять даже одну клетку. Современные ультразвуковые технологии позволяют создать луч с фокусом в несколько миллиметров, однако новый инструмент обладает точностью уже в 75 на 400 микрометров.

Общая технология была известна с конца 1800-х, однако новый скальпель стал возможным, благодаря использованию линзы, обернутой в углеродные нанотрубки и материал под названием полидиметилсилоксан, которая конвертирует свет в звуковые волны высокого давления. При должном фокусе, звуковые волны создают ударные волны и микропузырьки, которые оказывают давление на микроскопическом уровне. Технологию протестировали, отделив одну клетку рака яичников и просверлив 150-микрометровую дыру в искусственном почечном камне. Авторы технологии считают, что ее можно будет наконец использовать для доставки лекарств или удаления малых раковых опухолей или бляшек. Ее можно даже использовать для проведения безболезненных операций, поскольку такой ультразвуковой луч сможет избегать нервные клетки.

Подзарядка телефона голосом


С помощью нанотехнологий ученые пытаются извлекать энергию из самых разных источников. Одна из таких задач - создание устройства, которое не нужно будет заряжать. Nokia даже запатентовала устройство, которое поглощает энергию движения.

Поскольку звук - это всего лишь сжатие и расширение газов в воздухе, а значит движение, он может стать жизнеспособным источником энергии. Ученые экспериментируют с возможностью зарядки телефона прямо во время использования - пока вы звоните, например. В 2011 году ученые из Сеула взяли наностержни из оксида цинка, зажатые между двух электродов, чтобы добыть электричество из звуковых волн. Эта технология могла вырабатывать 50 милливольт просто из шума движения машин. Этого недостаточно, чтобы зарядить большинство электрических устройств, но в прошлом году лондонские инженеры решили создать устройство, вырабатывающее 5 вольт - и этого уже хватает, чтобы подзарядить телефон.

Хотя зарядка телефонов с помощью звуков может быть хорошей новостью для любителей поболтать, она может оказать серьезное влияние на развивающийся мир. Та же технология, которая обеспечила существование термоакустического холодильника, может быть использована для преобразования звука в электричество. Score-Stove - это плита и холодильник, которая извлекает энергию в процессе приготовления на топливной биомассе для производства небольших объемов электричества, порядка 150 ватт. Это немного, но достаточно, чтобы обеспечить 1,3 миллиарда людей на Земле, не имеющих доступа к электричеству, энергией.

Превратить тело человека в микрофон


Ученые из Disney сделали устройство, которое превращает человеческое тело в микрофон. Названное «ишин-ден-шин» в честь японского выражения, означающего общение через негласное взаимопонимание, оно позволяет кому-либо передать записанное сообщение, просто коснувшись уха другой персоны.

Это устройство включает микрофон, прикрепленный к компьютеру. Когда кто-то говорит в микрофон, компьютер сохраняет речь в виде записи на повторе, которая затем преобразуется в едва слышный сигнал. Этот сигнал передается по проводу от микрофона к телу любого, кто его держит, и производит модулированное электростатическое поле, которое вызывает крошечные вибрации, если человек чего-то касается. Вибрации могут быть услышаны, если человек коснется чужого уха. Их даже можно передавать от человека к человеку, если группа людей находится в физическом контакте.


Иногда наука создает что-то, о чем даже Джеймс Бонд мог только мечтать. Ученые из Массачусетского технологического института, и Adobe разработали алгоритм, который может считывать пассивные звуки от неодушевленных объектов на видео. Их алгоритм анализирует незаметные колебания, которые звуковые волны создают на поверхностях, и делает их слышимыми. В ходе одного эксперимента удалось считать внятную речь с пакета картофельных чипсов, лежащих на расстоянии 4,5 метра за звуконепроницаемым стеклом.

Для достижения наилучших результатов алгоритм требует, чтобы число кадров в секунду на видео было выше частоты аудиосигнала, для чего необходима высокоскоростная камера. Но, на худой конец, можно взять и обычную цифровую камеру, чтобы определить, к примеру, число собеседников в комнате и их пол - возможно, даже их личности. Новая технология обладает очевидными применениями в судебно-медицинской экспертизе, правоохранительных органах и шпионских войнах. Обладая такой технологией, можно узнать, что происходит за окном, просто достав цифровую камеру.

Акустическая маскировка


Ученые сделали устройство, которое может прятать объекты от звука. Оно похоже на странную дырявую пирамиду, но ее форма отражает траекторию звука так, будто бы он отражается от плоской поверхности. Если вы разместите эту акустическую маскировку на объекте на плоской поверхности, он будет неуязвим для звука вне зависимости от того, под каким углом вы будете звук направлять.

Хотя, возможно, эта накидка и не предотвратит прослушивание разговора, она может пригодиться в местах, где объект нужно спрятать от акустических волн, например, концертный зал. С другой стороны, военные уже положили глаз на эту маскировочную пирамиду, поскольку у нее есть потенциал прятать объекты от сонара, например. Поскольку под водой звук путешествует почти так же, как по воздуху, акустическая маскировка может сделать подводные лодки невидимыми к обнаружению.

Притягивающий луч


Долгие годы ученые пытались воплотить в жизнь технологии из «Звездного пути», в том числе и тяговый луч, с помощью которого можно захватывать и притягивать те или иные вещи. В то время как весьма много исследований фокусируется на оптическом луче, который использует тепло для передвижения объектов, эта технология ограничена размером объектов в несколько миллиметров. Ультразвуковые тяговые лучи, однако, доказали, что могут двигать большие объектов - до 1 сантиметра шириной. Возможно, это все еще мало, но у нового луча сила в миллиарды раз превосходит старые наработки.

Сосредоточив два ультразвуковых луча на цели, объект можно подтолкнуть по направлению к источнику луча, рассеивая волны в противоположном направлении (объект будет словно подпрыгивать на волнах). Хотя ученым пока не удалось создать лучший вид волны для своей техники, они продолжают работу. В будущем эту технологию можно будет использовать непосредственно для управления объектами и жидкостями в теле человека. Для медицины она может оказаться незаменимой. К сожалению, в космическом вакууме звук не распространяется, поэтому едва ли технология будет применима для управления космическими кораблями.

Тактильные голограммы


Наука также работает над другим творением «Звездного пути» - голодеком. Хотя в технологии голограммы нет ничего нового, на данный момент нам доступны не такие хитроумные ее проявления, как показывают фантастические фильмы. Правда, важнейшей чертой, отделяющей фантастические голограммы от реальных, остаются тактильные ощущения. Оставались, если быть точным. Инженеры из Университета Бристоля разработали так называемую технологию UltraHaptics, которая в состоянии передавать тактильные ощущения.

Изначально технология разрабатывалась для оказания силы на вашу кожу, чтобы облегчить жестовое управление определенными устройствами. Механик с грязными руками, например, мог бы пролистать руководство по эксплуатации. Технология должна была придать сенсорным экранам ощущение физической страницы.

Поскольку эта технология использует звук для производства вибраций, которые воспроизводят ощущение прикосновения, уровень чувствительности можно изменять. 4-герцевые вибрации похожи на тяжелые капли дождя, а 125-герцевые напоминают прикосновения к пене. Единственным недостатком на данный момент остается то, что эти частоты могут быть услышаны собаками, но дизайнеры говорят, что это поправимо.

Сейчас же они дорабатывают свое устройство для производства виртуальных форм вроде сфер и пирамид. Правда, это не совсем виртуальные формы. В основе их работы лежат сенсоры, которые следуют за вашей рукой и соответственно образуют звуковые волны. В настоящее время этим объектам не хватает детализации и некоторой точности, но дизайнеры говорят, что однажды технология будет совместима с видимой голограммой, а человеческий мозг будет в состоянии сложить их в одну картинку.

По материалам listverse.com

Февраль 18, 2016

Мир домашних развлечений довольно разнообразен и может включать в себя: просмотр кино на хорошей домашней кинотеатральной системе; увлекательный и захватывающий игровой процесс или прослушивание музыкальных композиций. Как правило, каждый находит что-то своё в этой области, или сочетает всё сразу. Но какими бы не были цели человека по организации своего досуга и в какую бы крайность не ударялись - все эти звенья прочно связаны одним простым и понятным словом - "звук". Действительно, во всех перечисленных случаях нас будет вести за ручку звуковое сопровождение. Но вопрос этот не так прост и тривиален, особенно в тех случаях, когда появляется желание добиться качественного звучания в помещении или любых других условиях. Для этого не всегда обязательно покупать дорогостоящие hi-fi или hi-end компоненты (хотя будет весьма кстати), а бывает достаточным хорошее знание физической теории, которая способна устранить большинство проблем, возникающих у всех, кто задался целью получить озвучку высокого качества.

Далее будет рассмотрена теория звука и акустики с точки зрения физики. В данном случае я постараюсь сделать это максимально доступно для понимания любого человека, который, возможно, далёк от знания физических законов или формул, но тем не менее страстно грезит воплощением мечты создания совершенной акустической системы. Я не берусь утверждать, что для достижения хороших результатов в этой области в домашних условиях (или в автомобиле, например) необходимо знать эти теории досканально, однако понимание основ позволит избежать множество глупых и абсурдных ошибок, а так же позволит достичь максимального эффекта звучания от системы любого уровня.

Общая теория звука и музыкальная терминология

Что же такое звук ? Это ощущение, которое воспринимает слуховой орган "ухо" (само по себе явление существует и без участия «уха» в процессе, но так проще для понимания), возникающее при возбуждении барабанной перепонки звуковой волной. Ухо в данном случае выступает в роли "приёмника" звуковых волн различной частоты.
Звуковая волна же представляет собой по сути последовательный ряд уплотнений и разряжений среды (чаще всего воздушной среды в обычных условиях) различной частоты. Природа звуковых волн колебательная, вызываемая и производимая вибрацией любых тел. Возникновение и распространение классической звуковой волны возможно в трёх упругих средах: газообразных, жидких и твёрдых. При возникновении звуковой волны в одном из этих типов пространства неизбежно возникают некоторые изменения в самой среде, например, изменение плотности или давления воздуха, перемещение частиц воздушных масс и т.д.

Поскольку звуковая волна имеет колебательную природу, то у неё имеется такая характеристика, как частота. Частота измеряется в герцах (в честь немецкого физика Генриха Рудольфа Герца), и обозначает количество колебаний за период времени, равный одной секунде. Т.е. например, частота 20 Гц обозначает цикл в 20 колебаний за одну секунду. От частоты звука зависит и субъективное понятие его высоты. Чем больше звуковых колебаний совершается за секунду, тем «выше» кажется звучание. У звуковой волны так же имеется ещё одна важнейшая характеристика, имеющая название - длина волны. Длиной волны принято считать расстояние, которое проходит звук определённой частоты за период, равный одной секунде. Для примера, длина волны самого низкого звука в слышимом диапазоне для человека частотой 20 Гц составляет 16,5 метров, а длина волны самого высокого звука 20000 Гц составляет 1,7 сантиметра.

Человеческое ухо устроено таким образом, что способно воспринимать волны только в ограниченном диапазоне, примерно 20 Гц - 20000 Гц (зависит от особенностей конкретного человека, кто-то способен слышать чуть больше, кто-то меньше). Таким образом, это не означает, что звуков ниже или выше этих частот не существует, просто человеческим ухом они не воспринимаются, выходя за границу слышимого диапазона. Звук выше слышимого диапазона называется ультразвуком , звук ниже слышимого диапазона называется инфразвуком . Некоторые животные способны воспринимать ультра и инфра звуки, некоторые даже используют этот диапазон для ориентирования в пространстве (летучие мыши, дельфины). В случае, если звук проходит через среду, которая напрямую не соприкасается с органом слуха человека, то такой звук может быть не слышим или сильно ослабленным в последствии.

В музыкальной терминологии звука существуют такие важные обозначения, как октава, тон и обертон звука. Октава означает интервал, в котором соотношение частот между звуками составляет 1 к 2. Октава обычно очень хорошо различима на слух, в то время как звуки в пределах этого интервала могут быть очень похожими друг на друга. Октавой также можно назвать звук, который делает вдвое больше колебаний, чем другой звук, в одинаковый временной период. Например, частота 800 Гц, есть ни что иное, как более высокая октава 400 Гц, а частота 400 Гц в свою очередь является следующей октавой звука частотой 200 Гц. Октава в свою очередь состоит из тонов и обертонов. Переменные колебания в гармонической звуковой волне одной частоты воспринимаются человеческим ухом как музыкальный тон . Колебания высокой частоты можно интерпретировать как звуки высокого тона, колебания низкой частоты – как звуки низкого тона. Человеческое ухо способно чётко отличать звуки с разницей в один тон (в диапазоне до 4000 Гц). Несмотря на это, в музыке используется крайне малое число тонов. Объясняется это из соображений принципа гармонической созвучности, всё основано на принципе октав.

Рассмотрим теорию музыкальных тонов на примере струны, натянутой определённым образом. Такая струна, в зависимости от силы натяжения, будет иметь "настройку" на какую-то одну конкретную частоту. При воздействии на эту струну чем-либо с одной определённой силой, что вызовет её колебания, стабильно будет наблюдаться какой-то один определенный тон звука, мы услышим искомую частоту настройки. Этот звук называется основным тоном. За основной тон в музыкальной сфере официально принята частота ноты "ля" первой октавы, равная 440 Гц. Однако, большинство музыкальных инструментов никогда не воспроизводят одни чистые основные тона, их неизбежно сопровождают призвуки, именуемые обертонами . Тут уместно вспомнить важное определение музыкальной акустики, понятие тембра звука. Тембр - это особенность музыкальных звуков, которые придают музыкальным инструментам и голосам их неповторимую узнаваемую специфику звучания, даже если сравнивать звуки одинаковой высоты и громкости. Тембр каждого музыкального инструмента зависит от распределения звуковой энергии по обертонам в момент появления звука.

Обертоны формируют специфическую окраску основного тона, по которой мы легко можем определить и узнать конкретный инструмент, а так же чётко отличить его звучание от другого инструмента. Обертоны бывают двух типов: гармонические и негармонические. Гармонические обертоны по определению кратны частоте основного тона. Напротив, если обертоны не кратны и заметно отклоняются от величин, то они называются негармоническими . В музыке практически исключается оперирование некратными обертонами, поэтому термин сводится к понятию "обертон", подразумевая под собой гармонический. У некоторых инструментов, например фортепиано, основной тон даже не успевает сформироваться, за короткий промежуток происходит нарастание звуковой энергии обертонов, а затем так же стремительно происходит спад. Многие инструменты создают так называемый эффект "переходного тона", когда энергия определённых обертонов максимальна в определённый момент времени, обычно в самом начале, но потом резко меняется и переходит к другим обертонам. Частотный диапазон каждого инструмента можно рассмотреть отдельно и он обычно ограничивается частотами основных тонов, который способен воспроизводить данный конкретный инструмент.

В теории звука также присутствует такое понятие как ШУМ. Шум - это любой звук, которой создаётся совокупностью несогласованных между собой источников. Всем хорошо знаком шум листвы деревьев, колышимой ветром и т.д.

От чего зависит громкость звука? Очевидно, что подобное явление напрямую зависит от количества энергии, переносимой звуковой волной. Для определения количественных показателей громкости, существует понятие - интенсивность звука. Интенсивность звука определяется как поток энергии, прошедший через какую-то площадь пространства (например, см2) за единицу времени (например, за секунду). При обычном разговоре интенсивность составляет примерно 9 или 10 Вт/см2. Человеческое ухо способно воспринимать звуки достаточно широкого диапазона чувствительности, при этом восприимчивость частот неоднородна в пределах звукового спектра. Так наилучшим образом воспринимается диапазон частот 1000 Гц - 4000 Гц, который наиболее широко охватывает человеческую речь.

Поскольку звуки столь сильно различаются по интенсивности, удобнее рассматривать её как логарифмическую величину и измерять в децибелах (в честь шотландского учёного Александра Грэма Белла). Нижний порог слуховой чувствительности человеческого уха составляет 0 Дб, верхний 120 Дб, он же ещё называется "болевой порог". Верхняя граница чувствительности так же воспринимается человеческим ухом не одинаково, а зависит от конкретной частоты. Звуки низких частот должны обладать гораздо бОльшей интенсивностью, чем высокие, чтобы вызвать болевой порог. Например, болевой порог на низкой частоте 31,5 Гц наступает при уровне силы звука 135 дБ, когда на частоте 2000 Гц ощущение боли появится при уже при 112 дБ. Имеется также понятие звукового давления, которое фактически расширяет привычное объяснение распространение звуковой волны в воздухе. Звуковое давление - это переменное избыточное давление, возникающее в упругой среде в результате прохождения через неё звуковой волны.

Волновая природа звука

Чтобы лучше понять систему возникновения звуковой волны, представим классический динамик, находящийся в трубе, наполненной воздухом. Если динамик совершит резкое движение вперёд, то воздух, находящийся в непосредственной близости диффузора на мгновение сжимается. После этого воздух расширится, толкая тем самым сжатую воздушную область вдоль по трубе.
Вот это волновое движение и будет впоследствии звуком, когда достигнет слухового органа и "возбудит" барабанную перепонку. При возникновении звуковой волны в газе создаётся избыточное давление, избыточная плотность и происходит перемещение частиц с постоянной скоростью. Про звуковые волны важно помнить то обстоятельство, что вещество не перемещается вместе со звуковой волной, а возникает лишь временное возмущение воздушных масс.

Если представить поршень, подвешенный в свободном пространстве на пружине и совершающий повторяющиеся движения "вперёд-назад", то такие колебания будут называться гармоническими или синусоидальными (если представить волну в виде графика, то получим в этом случае чистейшую синусойду с повторяющимися спадами и подъёмами). Если представить динамик в трубе (как и в примере, описанном выше), совершающий гармонические колебания, то в момент движения динамика "вперёд" получается известный уже эффект сжатия воздуха, а при движении динамика "назад" обратный эффект разряжения. В этом случае по трубе будет распространяться волна чередующихся сжатий и разрежений. Расстояние вдоль трубы между соседними максимумами или минимумами (фазами) будет называться длиной волны . Если частицы колеблются параллельно направлению распространения волны, то волна называется продольной . Если же они колеблются перпендикулярно направлению распространения, то волна называется поперечной . Обычно звуковые волны в газах и жидкостях – продольные, в твердых же телах возможно возникновение волн обоих типов. Поперечные волны в твердых телах возникают благодаря сопротивлению к изменению формы. Основная разница между этими двумя типами волн заключается в том, что поперечная волна обладает свойством поляризации (колебания происходят в определенной плоскости), а продольная – нет.

Скорость звука

Скорость звука напрямую зависит от характеристик среды, в которой он распространяется. Она определяется (зависима) двумя свойствами среды: упругостью и плотностью материала. Скорость звука в твёрдых телах соответственно напрямую зависит от типа материала и его свойств. Скорость в газовых средах зависит только от одного типа деформации среды: сжатие-разрежение. Изменение давления в звуковой волне происходит без теплообмена с окружающими частицами и носит название адиабатическое.
Скорость звука в газе зависит в основном от температуры - возрастает при повышении температуры и падает при понижении. Так же скорость звука в газообразной среде зависит от размеров и массы самих молекул газа, - чем масса и размер частиц меньше, тем "проводимость" волны больше и больше соответственно скорость.

В жидкой и твёрдой средах принцип распространения и скорость звука аналогичны тому, как волна распространяется в воздухе: путём сжатия-разряжения. Но в данных средах, помимо той же зависимости от температуры, достаточно важное значение имеет плотность среды и её состав/структура. Чем меньше плотность вещества, тем скорость звука выше и наоборот. Зависимость же от состава среды сложнее и определяется в каждом конкретном случае с учётом расположения и взаимодействия молекул/атомов.

Скорость звука в воздухе при t, °C 20: 343 м/с
Скорость звука в дистиллированной воде при t, °C 20: 1481 м/с
Скорость звука в стали при t, °C 20: 5000 м/с

Стоячие волны и интерференция

Когда динамик создаёт звуковые волны в ограниченном пространстве неизбежно возникает эффект отражения волн от границ. В результате этого чаще всего возникает эффект интерференции - когда две или более звуковых волн накладываются друг на друга. Особыми случаями явления интерференции являются образование: 1) Биений волн или 2) Стоячих волн. Биения волн - это случай, когда происходит сложение волн с близкими частотами и амплитудой. Картина возникновения биений: когда две похожие по частоте волны накладываются друг на друга. В какой-то момент времени при таком наложении, амплитудные пики могут совпадать "по фазе", а также могут совпадать и спады по "противофазе". Именно так и характеризуются биения звука. Важно помнить, что в отличие от стоячих волн, фазовые совпадения пиков происходят не постоянно, а через какие-то временные промежутки. На слух такая картина биений различается достаточно чётко, и слышится как периодическое нарастание и убывание громкости соответственно. Механизм возникновения этого эффекта предельно прост: в момент совпадения пиков громкость нарастает, в момент совпадения спадов громкость уменьшается.

Стоячие волны возникают в случае наложения двух волн одинаковой амлитуды, фазы и частоты, когда при "встрече" таких волн одна движется в прямом, а другая – в обратном направлении. В участке пространства (где образовалась стоячая волна) возникает картина наложения двух частотных амплитуд, с чередованием максимумов (т.н. пучностей) и минимумов (т.н. узлов). При возникновении этого явления крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения. В отличие от бегущих волн, в стоячей волне отсутствует перенос энергии вследствие того, что образующие эту волну прямая и обратная волны переносят энергию в равных количествах и в прямом и в противоположном направлениях. Для наглядного понимания возникновения стоячей волны, представим пример из домашней акустики. Допустим, у нас есть напольные акустические системы в некотором ограниченном пространстве (комнате). Заставив их играть какую-нибудь композицию с большим количеством баса, попробуем изменить местоположение слушателя в помещении. Таким образом слушатель, попав в зону минимума (вычитания) стоячей волны ощутит эффект того, что баса стало очень мало, а если слушатель попадает в зону максимума (сложения) частот, то получается обратный эффект существенного увеличения басовой области. При этом эффект наблюдается во всех октавах базовой частоты. Например, если базовая частота составляет 440 Гц, то явление "сложения" или "вычитания" будет наблюдаться также на частотах 880 Гц, 1760 Гц, 3520 Гц и т.д.

Явление резонанса

У большинства твёрдых тел имеется собственная частота резонанса. Понять этот эффект достаточно просто на примере обычной трубы, открытой только с одного конца. Представим ситуацию, что с другого конца трубы подсоединяется динамик, который может играть какую-то одну постоянную частоту, её также впоследствии можно менять. Так вот, у трубы имеется собственная частота резонанса, говоря простым языком - это частота, на которой труба "резонирует" или издаёт свой собственный звук. Если частота динамика (в результате регулировки) совпадёт с частотой резонанса трубы, то возникнет эффект увеличения громкости в несколько раз. Это происходит потому, что громкоговоритель возбуждает колебания воздушного столба в трубе со значительной амплитудой до тех пор, пока не найдётся та самая «резонансная частота» и произойдёт эффект сложения. Возникшее явление можно описать следующим образом: труба в этом примере "помогает" динамику, резонируя на конкретной частоте, их усилия складываются и "выливаются" в слышимый громкий эффект. На примере музыкальных инструментов легко прослеживается это явление, поскольку в конструкции большинства присутствуют элементы, называемые резонаторами. Нетрудно догадаться, что служит цели усилить определённую частоту или музыкальный тон. Для примера: корпус гитары с резонатором ввиде отверстия, сопрягаемого с объёмом; Конструкция трубки у флейты (и все трубы вообще); Циллиндрическая форма корпуса барабана, который сам по себе является резонатором определённой частоты.

Частотный спектр звука и АЧХ

Поскольку на практике практически не встречаются волны одной частоты, то возникает необходимость разложения всего звукового спектра слышимого диапазона на обертоны или гармоники. Для этих целей существуют графики, которые отображают зависимость относительной энергии звуковых колебаний от частоты. Такой график называется графиком частотного спектра звука. Частотный спектр звука бывает двух типов: дискретный и непрерывный. Дискретный график спектра отображает частоты по отдельности, разделённые пустыми промежутками. В непрерывном спектре присутствуют сразу все звуковые частоты.
В случае с музыкой или акустикой чаще всего используется обычный график Амплитудно-Частотой Характеристики (сокращённо "АЧХ"). На таком графике представлена зависимость амплитуды звуковых колебаний от частоты на протяжении всего спектра частот (20 Гц - 20 кГц). Глядя на такой график легко понять, например, сильные или слабые стороны конкретного динамика или акустической системы в целом, наиболее сильные участки энергетической отдачи, частотные спады и подъёмы, затухания, а так же проследить крутизну спада.

Распространение звуковых волн, фаза и противофаза

Процесс распространения звуковых волн происходит во всех направлениях от источника. Простейший пример для понимания этого явления: камешек, брошенный в воду.
От места, куда упал камень, начинают расходиться волны по поверхности воды во всех направлениях. Однако, представим ситуацию с использованием динамика в неком объёме, допустим закрытом ящике, который подключён к усилителю и воспроизводит какой-то музыкальный сигнал. Несложно заметить (особенно при условии, если подать мощный НЧ сигнал, например бас-бочку), что динамик совершает стремительное движение "вперёд", а потом такое же стремительное движение "назад". Остаётся понять, что когда динамик совершает движение вперёд, он излучает звуковую волну, которую мы слышим впоследствии. А вот что происходит, когда динамик совершает движение назад? А происходит парадоксально тоже самое, динамик совершает тот же звук, только распространяется он в нашем примере всецело в пределах объёма ящика, не выходя за его пределы (ящик закрыт). В целом, на приведённом выше примере можно наблюдать достаточно много интересных физических явлений, наиболее значимым из которых является понятие фазы.

Звуковая волна, которую динамик, находясь в объёме, излучает в направлении слушателя - находится "в фазе". Обратная же волна, которая уходит в объём ящика, будет соответственно противофазной. Остаётся только понять, что подразумевают эти понятия? Фаза сигнала – это уровень звукового давления в текущий момент времени в какой-то точке пространства. Фазу проще всего понять на примере воспроизведения музыкального материала обычной напольной стерео-парой домашних акустических систем. Представим, что две такие напольные колонки установлены в неком помещении и играют. Обе акустические системы в этом случае воспроизводят синхронный сигнал переменного звукового давления, притом звуковое давление одной колонки складывается со звуковым давлением другой колонки. Происходит подобный эффект за счёт синхронности воспроизведения сигнала левой и правой АС соответственно, другими словами, пики и спады волн, излучаемых левыми и правыми динамиками совпадают.

А теперь представим, что давления звука по-прежнему меняются одинаковым образом (не претерпели изменений), но только теперь противоположно друг другу. Подобное может произойти, если подключить одну акустическую систему из двух в обратной полярности ("+" кабель от усилителя к "-" клемме акустической системе, и "-" кабель от усилителя к "+" клемме акустической системы). В этом случае противоположный по направлению сигнал вызовет разницу давлений, которую можно представить в виде чисел следующим образом: левая акустическая система будет создавать давление "1 Па", а правая акустическая система будет создавать давление "минус 1 Па". В результате, суммарная громкость звука в точке размещения слушателя будет равна нулю. Это явление называется противофазой. Если рассматривать пример более детально для понимания, то получается, что два динамика, играющие "в фазе" - создают одинаковые области уплотнения и разряжения воздуха, чем фактически помогают друг другу. В случае же с идеализированной противофазой, область уплотнения воздушного пространства, созданная одним динамиком, будет сопровождаться областью разряжения воздушного пространства, созданной вторым динамиком. Выглядит это примерно, как явление взаимного синхронного гашения волн. Правда, на практике падения громкости до нуля не происходит, и мы услышим сильно искажённый и ослабленный звук.

Самым доступным образом можно описать это явление так: два сигнала с одинаковыми колебаниями (частотой), но сдвинутые по времени. Ввиду этого, удобнее представить эти явления смещения на примере обычных круглых стрелочных часов. Представим, что на стене висит несколько одинаковых круглых часов. Когда секундные стрелки этих часов бегут синхронно, на одних часах 30 секунд и на других 30, то это пример сигнала, который находится в фазе. Если же секундные стрелки бегут со смещением, но скорость по-прежнему одинакова, например, на одних часах 30 секунд, а на других 24 секунды, то это и есть классический пример смещения (сдвига) по фазе. Таким же образом фаза измеряется в градусах, в пределах виртуальной окружности. В этом случае, при смещении сигналов относительно друг друга на 180 градусов (половина периода), и получается классическая противофаза. Нередко на практике возникают незначительные смещения по фазе, которые так же можно определить в градусах и успешно устранить.

Волны бывают плоские и сферические. Плоский волновой фронт распространяется только в одном направлении и редко встречается на практике. Сферический волновой фронт представляет собой волны простого типа, которые исходят из одной точки и распространяется во всех направлениях. Звуковые волны обладают свойством дифракции , т.е. способностью огибать препятствия и объекты. Степень огибания зависит от отношения длины звуковой волны к размерам препятствия или отверстия. Дифракция возникает и в случае, когда на пути звука оказывается какое-либо препятствие. В этом случае возможны два варианта развития событий: 1) Если размеры препятствия намного больше длины волны, то звук отражается или поглощается (в зависимости от степени поглощения материала, толщины препятствия и т.д.), а позади препятствия формируется зона "акустической тени". 2) Если же размеры препятствия сравнимы с длиной волны или даже меньше её, тогда звук дифрагирует в какой-то мере во всех направлениях. Если звуковая волна при движении в одной среде попадает на границу раздела с другой средой (например воздушная среда с твёрдой средой), то может возникнуть три варианта развития событий: 1) волна отразится от поверхности раздела 2) волна может пройти в другую среду без изменения направления 3) волна может пройти в другую среду с изменением направления на границе, это называется "преломление волны".

Отношением избыточного давления звуковой волны к колебательной объёмной скорости называется волновое сопротивление. Говоря простыми словами, волновым сопротивлением среды можно назвать способность поглощать звуковые волны или "сопротивляться" им. Коэффициенты отражения и прохождения напрямую зависят от соотношения волновых сопротивлений двух сред. Волновое сопротивление в газовой среде гораздо ниже, чем в воде или твёрдых телах. Поэтому если звуковая волна в воздухе падает на твердый объект или на поверхность глубокой воды, то звук либо отражается от поверхности, либо поглощается в значительной мере. Зависит это от толщины поверхности (воды или твёрдого тела), на которую падает искомая звуковая волна. При низкой толщине твёрдой или жидкой среды, звуковые волны практически полностью "проходят", и наоборот, при большой толщине среды волны чаще отражается. В случае отражения звуковых волн, происходит этот процесс по хорошо известному физическому закону: "Угол падения равен углу отражения". В этом случае, когда волна из среды с меньшей плотностью попадает на границу со средой большей плотности - происходит явление рефракции . Оно заключается в изгибе (преломлении) звуковой волны после "встречи" с препятствием, и обязательно сопровождается изменением скорости. Рефракция зависит также от температуры среды, в которой происходит отражение.

В процессе распространения звуковых волн в пространстве неизбежно происходит снижение их интенсивности, можно сказать затухание волн и ослабление звука. На практике столкнуться с подобным эффектом достаточно просто: например, если два человека встанут в поле на некотором близком расстоянии (метр и ближе) и начнут что-то говорить друг другу. Если впоследствии увеличивать расстояние между людьми (если они начнут отдаляться друг от друга), тот же самый уровень разговорной громкости будет становиться всё менее и менее слышимым. Подобный пример наглядно демонстрирует явление снижения интенсивности звуковых волн. Почему это происходит? Причиной тому различные процессы теплообмена, молекулярного взаимодействия и внутреннего трения звуковых волн. Наиболее часто на практике происходит превращение звуковой энергии в тепловую. Подобные процессы неизбежно возникают в любой из 3-ёх сред распространения звука и их можно охарактеризовать как поглощение звуковых волн .

Интенсивность и степень поглощения звуковых волн зависит от многих факторов, таких как: давление и температура среды. Также поглощение зависит от конкретной частоты звука. При распространении звуковой волны в жидкостях или газах возникает эффект трения между разными частицами, которое называется вязкостью. В результате этого трения на молекулярном уровне и происходит процесс превращения волны из звуковой в тепловую. Другими словами, чем выше теплопроводность среды, тем меньше степень поглощения волн. Поглощение звука в газовых средах зависит ещё и от давления (атмосферное давление меняется с повышением высоты относительно уровня моря). Что касательно зависимости степени поглощения от частоты звука, то принимая во внимание вышеназванные зависимости вязкости и теплопроводности, поглощение звука тем выше, чем выше его частота. Для примера, при нормальной температуре и давлении, в воздухе поглощение волны частотой 5000 Гц составляет 3 Дб/км, а поглощение волны частотой 50000 Гц составит уже 300 Дб/м.

В твёрдых средах сохраняются все вышеназванные зависимости (теплопроводность и вязкость), однако к этому добавляется ещё несколько условий. Они связаны с молекулярной структурой твёрдых материалов, которая может быть разной, со своими неоднородностями. В зависимости от этого внутреннего твёрдого молекулярного строения, поглощение звуковых волн в данном случае может быть различным, и зависит от типа конкретного материала. При прохождении звука через твёрдое тело, волна претерпевает ряд преобразований и искажений, что чаще всего приводит к рассеиванию и поглощению звуковой энергии. На молекулярном уровне может возникнуть эффект дислокаций, когда звуковая волна вызывает смещение атомных плоскостей, которые затем возвращаются в исходное положение. Либо же, движение дислокаций приводит к столкновению с перпендикулярными им дислокациями или дефектами кристаллического строения, что вызывает их торможение и как следствие некоторое поглощение звуковой волны. Однако, звуковая волна может и резонировать с данными дефектами, что приведет к искажению исходной волны. Энергия звуковой волны в момент взаимодействия с элементами молекулярной структуры материала рассеивается в результате процессов внутреннего трения.

В я постараюсь разобрать особенности слухового восприятия человека и некоторые тонкости и особенности распространения звука.