Эхокардиография — метод исследования и диагностики нарушений морфологии и механической деятельности сердца, основанный на регистрации отраженных от движущихся структур сердца ультразвуковых сигналов.

Получение изображения структур сердца с помощью ультразвука основано на отражении ультразвуковых волн на границе между двумя веществами с разными физическими свойствами, как, например, кровью и эндокардом. Поскольку при этом угол падения равен углу отражения, получаемое изображение является зеркальным.

Ультразвуковое исследование сердца – незаменимая методика для диагностики заболеваний сердечно-сосудистой системы. В настоящее время в плане этого исследования обязательным является применение допплеровской методики, включающей регистрацию потоков крови, движущихся через сердечные клапаны в виде спектрограммы (графика зависимости скорости от времени) и цветовой картограммы кровотока. Современные высокотехнологичные ультразвуковые методы исследования сердца (тканевая допплерэхокардиография, стресс-эхокардиография, чреспищеводная эхокардиография) значительно более трудоемкие, но и в ряде случаев более информативны и даже незаменимы.

При помощи этого метода осуществляется ультразвуковая диагностика таких патологических состояний, как приобретенные и врожденные пороки сердца, воспалительные поражения (эндокардит, миокардит, перикардит), дилатационные и гипертрофические кардиомиопатии, диагностика кинетической дисфункции миокарда, наличие внутриполостных и околосердечных образований (доброкачественные и злокачественные опухоли сердца, образования средостения). Эхокардиография также един- ственный достоверный метод диагностирования клапанных пороков сердца (врожденных или приобретенных — ревматических, постэндокардитических, атеросклеротических), а также большинства известных врожденных пороков сердца. Метод позволяет выполнять динамическое наблюдение за пациентами с пороками сердца и вовремя выставить показания к оперативной их коррекции.

Показания для ЭхоКГ

1) шум в сердце;

2) патологические изменения на рентгенограмме грудной клетки: увеличение сердца или его отдельных полостей; изменения аорты; кальцинаты в области сердца;

3) боль в грудной клетке (особенно необъяснимая);

4) обмороки и нарушения мозгового кровообращения (особенно у больных молодого возраста);

5) нарушения ритма;

6) лихорадка неясного генеза;

7) отягощенный семейный анамнез в отношении внезапной смерти, ИБС, идиопатического гипертрофического субаортального стеноза;

8) наблюдение больных: с ИБС, в том числе с инфарктом миокарда; с артериальной гипертензией; с приобретенными и врожденными порока ми сердца; с кардиомиопатиями; после кардиохирургических операций; с некардиальной патологией — шоком, хронической почечной недостаточностью, системными заболеваниями соединительной ткани, при приеме кардио- токсичных лекарственных препаратов.

Одномерная эхокардиография

При одномерной ЭхоКГ изучение движения элементов сердца проводится из одной точки с использованием разных углов

наклона датчика из 4 основных стандартных позиций по Н.Feigenbaum

В I позиции последовательно визуализируют небольшую часть правого желудочка, межжелудочковую перегородку, полость левого желудочка на уровне сухожильных нитей митрального клапана. В данной позиции определяют размеры полости левого и правого желудочков, проводят оценку толщины и характера движения межжелудочковой перегородки и задней стенки левого желудочка.

Во II позиции ультразвуковой луч проходит через правый желудочек, межжелудочковую перегородку, переднюю и заднюю створки митрального клапана и заднюю стенку левого желудочка. Данная позиция используется для определения анатомического строения и характера движения митральных створок.

III стандартная позиция образуется при направлении луча через основание передней створки митрального клапана, при этом в зону локации попадает сегмент левого желудочка в области выходного тракта и часть полости левого предсердия.

IV стандартная позиция образуется при прохождении луча через выходной тракт правого желудочка, корень аорты, аортальные клапаны и полость левого предсердия. III и IV позиции обладают высокой информативностью в диагностике стеноза устья аорты, субаортального стеноза, патологии аортальных клапанов.

Двухмерная эхокардиография

Двухмерная ЭхоКГ существенно дополняет и уточняет информацию о характере поражения сердца, полученную при одномерной методике. Исследование сердца проводится в стандартных плоскостях по длинной, короткой оси и в плоскости 4 камер,используя парастернальную (наиболее часто), супрастернальную, апикальную, субкостальную проекции. Двухмерная ЭхоКГ позволяет охарактеризовать морфологически правый и левый желудочки, выявить патологию атриовентрикулярных клапанов, размеры и расположения дефекта межжелудочковой перегородки, обструкцию выводного тракта левого желудочка, патологию полулунных клапанов.

Допплерэхокардиография

Допплерэхокардиография — метод, позволяющий неинвазивно оценить параметры центральной гемодинамики. Применение доплеровского исследования подразумевает высокий технический навык в проведении двухмерного исследования, знание топографической анатомии и гемодинамики сердца. Следует помнить, что все допплеровские измерения зависят от угла сканирования,так что правильное определение скорости возможно только при параллельном направлении ультразвукового пучка и движения объекта. В том случае, если ультразвуковой пучок проходит под углом или ортогонально по отношению к направлению движения объекта, измеренные скорости будут меньше истинных на величину косинуса угла между ними.

Используют следующие варианты допплерографии:

  1. импульсно-волновой
  2. режим высокой частоты повторения импульсов
  3. непрерывноволновой
  4. цветовой
  5. цветовой М-режим
  6. энергетический
  7. Тканевой (тканевой цветовой, тканевой нелинейный допплер, тканевой импульсноволновой, тканевой след, допплер оценки деформации и скорости деформации, векторный анализ движения эндокарда).

Показания к применению допплерэхокардиографии

локализация шумов сердца; дифференциальная диагностика органических шумов с функциональными; количественная оценка выраженности стеноза клапанов; определение регургитации крови на клапане; определение внутри- и внесердечных шунтов крови; определение величин давления в полостях сердца.

Чреспищеводная эхокардиография

Современная эхокардиография имеет ряд разновидностей,одной из которых является череспищеводная эхокардиография.

Метод приобретает большую разрешающую способность благодаря непосредственной близости ультразвукового датчика к сердцу

Благодаря высокой разрешающей способности пищеводная эхокардиография играет важную роль в морфологическом и функциональном изучении клапанов. Оценка состояния митрального клапана (в том числе искусственного) является одним из наиважнейших показаний к пищеводной эхокардиографии.

Таким образом, важнейшими показаниями к выполнению пищеводной ЭхоКГ являются:

  1. Тщательная оценка состояния собственных и искусственных клапанов обследование левого и правого предсердий и меж- предсердной перегородки обследование грудной части аорты.
  2. Оценка функции естественного или искусственного клапана во время хирургии клапанов сердца.
  3. Контрольная оценка функции левого желудочка во время больших операций обследование при врожденных порокахсердца.
  4. Обследование клапанов сердца.
  5. Подозрение на эндокардит является другим важным показа- нием к пищеводной эхокардиографии.

Стресс-эхокардиография

Стресс-ЭхоКГ — метод комплексной неинвазивной диагностики, который позволяет детализировать ишемию миокарда,определять бассейн стенозированной коронарной артерии, выявлять жизнеспособность миокарда в зоне постинфарктного поражения, оценивать инотропный резерв сократимости левого желудочка.

Главной предпосылкой, лежащей в основе метода, является тот факт, что возникновение ишемии миокарда сопровождается нарушением сократимости левого желудочка. Длительное снижение или полное прекращение коронарного кровотока приводит к развитию острого инфаркта миокарда. Если же нарушение кровоснабжения миокарда носит преходящий характер, то появляющееся патологическое движение стенки левого желудочка служит маркером для определения локализации и выраженности ишемии миокарда.

Стрессовая ЭхоКГ позволяет изучить влияние физического и фармакологического стресса на функцию миокарда левого желудочка. В норме под воздействием стресса миокард сокращается более сильно. В случае коронарного стеноза стрессом может быть индуцирована ишемия миокарда. Это приведет к региональным нарушениям движений стенки, которые могут быть обнаружены эхокардиографически. В настоящее время для индуцирования фармакологического стресса наиболее часто применяется добутамин. Пищеводной стресс-эхокардиографии отдается предпочтение при плохом качестве трансторакального изображения, что чаще всего бывает, если пациент находится на искусственном дыхании. Чувствительность и специфичность пищеводной стресс-эхокардиографии посредством предсердной электрической стимуляции для обнаружения коронарного стеноза высоки (соответственно 83 и 94%).

Это обследование также очень ценно в плане обнаружения ишемической недостаточности митрального клапана. Региональная ишемия миокарда может вызывать дисфункцию сосочковой мышцы или дилатацию левого желудочка, которые ведут к развитию острой (или усугублению имеющейся) недостаточности митрального клапана. Это может быть причиной левосторонней сердечной недостаточности при еще хорошей в остальном систолической функции левого желудочка в покое.Несколько причин обусловили необходимость возникновения такого диагностического метода. Во-первых, это невысокая прогностическая ценность рутинной нагрузочной ЭКГ.

Методика проведения ЭхоКГ

Техника исследования проста, его проводит подготовленный врач, хорошо знающий топографию структур сердца в норме, характер их возможных патологических изменений при различных заболеваниях и отображение нормальных и измененных структур на эхокардиограмме в разные периоды сердечного цикла. ЭхоКГ проводят в синхронной записи с ЭКГ в одном из стандартных или однополюсных отведений, которые выбираются по хорошей выраженности зубцов желудочкового комплекса.

Во время исследования пациент лежит на спине или на левом боку. Датчик располагают над сердцем в различных позициях,обеспечивающих доступ к исследованию разных отделов сердца по его длинной и короткой осям.

Основные доступы достигаются, главным образом, с помо- щью 4-х позиций размещения датчика, в 3 или 4 межреберных промежутках (парастернальный доступ); в яремной ямке (супрастернальный доступ), у нижнего края реберной дуги в области мечевидного отростка грудины (субкостальный доступ); в области верхушечного толчка (верхушечный доступ).

Из всех этих позиций проводится секторальное сканирование сердца в плоскости, которая максимально позволяет визуализировать зоны интереса. В основном это три плоскости:

— плоскость длинной оси (сагиттальная плоскость):

— плоскость короткой оси (горизонтальная);

— плоскость, проходящая через 4 камеры сердца (параллельная дорсальной и проходящая на уровне длинника сердца).

Следует отметить условия, мешающие проведению ЭхоКГ:

  1. Недостаточный контакт между кожей и датчиком (преобразо-вателем) из-за одежды и т.д.
  2. Неправильное положение тела пациента.
  3. Наличие респираторных заболеваний, дыхательной недоста-точности.
  4. Хорошее изображение не может быть получено, если маленький ребенок плачет или пациент ведет себя неспокойно.
  5. При методе Допплера полноценные сигналы не могут быть по- лучены, если угол между направлением кровотока и лучом До-

пплера слишком велик.

Соответственно для получения качественного ультразвукового изображения необходимо соблюдать следующие требования: пациенту занять положение лежа на левом боку, для получения качественного изображения пациент должен задержать дыхание на вдохе, для пациентов с эмфиземой легких следует избрать доступ со стороны верхушки легкого, детей проще обследовать, когда они спят и т.д.

Стандартные эхокардиографические измерения и нормативы

1 КСР 2.2 — 4.0 см

2 КДР 3.5 — 5.5 см

3 МЖП в систолу 1.0 — 1.5 см

4 МЖП в диастолу 0.6 — 1.1 см

5 Толщина Задней стенки ЛЖ в систолу 1.0 — 1.6 см

6 Толщина Задней стенки ЛЖ в диастолу 0.8 — 1.1 см

7 Диаметр аорты 1.8 — 3.5 см

8 Диаметр левого предсердия 1.8 — 3.5 см

9 Систолическое расхождение АК 1.6 — 2.2 см

10 КСО 26 — 69 см3

11 КДО 50 -147 см3

12 Ударный объем ЛЖ 40 -130 мл

13 Фракция выброса ЛЖ 55 — 75 %

14 Масса миокарда ЛЖ 90 — 150 г

16 Толщина передней стенки ПЖ 0.3 — 0.5 см

Оценка систолической функции левого желудочка

Систолическая функция ЛЖ оценивается по нескольким показателям, центральное место среди которых занимает ударный объем (УО) и фракция выброса (ФВ) левого желудочка (ЛЖ).Метод Teicholz. До последнего времени расчет УО, ФВ идругих гемодинамических показателей проводился на основании измерений М — модальной эхокардиограммы, зарегистрированной из левого парастернального доступа. Для расчета учитывается степень передне-заднего укорочения ЛЖ, то есть отношения КДР и KCР.

Оценка нарушений региональной сократимости

Выявление локальных нарушений сократимости ЛЖ с помощью двухмерной ЭхоКГ имеет важное значение для диагностики ИБС. Исследование проводится из верхушечного доступа по длинной оси в проекции двух- и четырехкамерного сердца, а также из левого парастернального доступа по длинной и короткой осям.

Для уточнения локализации зон нарушения локальной сократимости миокард ЛЖ и ПЖ условно делят на сегменты.

При выявлении зоны нарушения локальной сократимости миокарда и уточнения ее локализации можно предположить, какая из коронарных артерий пострадала.

— Левая передняя нисходящая артерия — нарушение локальной сократимости в области переднего отдела перегородки, передней стенки, переднего отдела верхушки ЛЖ. При поражении диагональных ветвей «присоединяется» нарушение сократимости в области боковой стенки. В том случае, если передняя нисходящая артерия кровоснабжает всю верхушку, апикальные сегменты задней и заднебоковой стенки будут поражены. В зависимости от уровня поражения артерии можно выявить зоны нарушения локальной сократимости в том или ином отделе левого желудочка.

При локализации поражения в дистальной трети сосуда поражается только верхушка, в области средней трети сосуда — средний отдел левого желудочка и апикальные сегменты, в проксимальном отделе — вся стенка, включая базальные отделы миокарда.

— Поражение огибающей артерии приводит к аномалии локальной сократимости в области боковой и задней стенок ЛЖ.

При этом возможны индивидуальные особенности кровоснабжения миокарда.

— Поражение задней нисходящей артерии приводит к нарушению локальной сократимости в области задней стенки ЛЖ.

— Правая коронарная артерия кровоснабжает, как правило,ПЖ и задний отдел МЖП.

В каждом из этих сегментов оценивается характер и ампли- туда движения миокарда, а также степень его систолического утолщения. Различают 3 вида локальных нарушений сократительной функции ЛЖ, объединяемых понятием «асинергия»

Основными причинами локальных нарушений сократимости миокарда ЛЖ являются:

  1. Инфаркт миокарда.
  2. Постинфарктный кардиосклероз.
  3. Преходящая болевая и безболевая ишемия миокарда, в том числе ишемия, индуцированная функциональными нагрузочными тестами.
  1. Постоянно действующая ишемия миокарда, еще сохранившего свою жизнеспособность (так называемый «гибернирующий миокард»).
  1. Дилатационная и гипертрофическая кардиомиопатии, которые нередко также сопровождаются неравномерным поражением миокарда ЛЖ.
  1. Локальные нарушения внутрижелудочковой проводимости(блокада, синдром WPW и др.).
  2. Парадоксальные движения МЖП, например при объемной перегрузке ПЖ или блокадах ножек пучка Гиса.

Нормокинез — все участки эндокарда в систолу равномерно утолщаются.

Гипокинез — уменьшение утолщения эндокарда и миокарда в одной из зон в систолу по сравнению с остальными участками. Гипокинез может быть диффузным и локальным. Локальный гипокинез, как правило связан с мелкоочаговым или интрамуральным поражением миокарда. Гипокинез может явиться следствием частой ишемии в какой-либо зоне (гибернирующий миокард) и быть преходящим.

Акинез — отсутствие утолщения эндокарда и миокарда в систолу в одном из участков. Акинезия, как правило, свидетельствует о наличии крупноочагового поражения. На фоне значительной дилатации камер сердца невозможно достоверно судить о наличии зоны акинезии.

Дискинез — парадоксальное движение участка сердечной мышцы в систолу (выбухание). Дискинез характерен для аневризмы.

Варианты сократимости миокарда.

Наиболее выраженные нарушения локальной сократимости миокарда выявляют при остром ИМ, постинфарктном кардио-

склерозе и аневризме ЛЖ.

Нарушения локальной сократимости отдельных сегментов ЛЖ у больных ИБС принято описывать по пятибалльной шкале:

1 балл - нормальная сократимость;

2 балла - умеренная гипокинезия (незначительное снижение амплитуды систолического движения и утолщения в иссле-

дуемой области);

3 балла - выраженная гипокинезия;

4 балла - акинезия;

5 баллов — дискинезия (систолическое движение миокарда исследуемого сегмента происходит в направлении, противопо-

ложном нормальному).

Оценка диастолической функции левого желудочка

Диастолическая функция левого желудочка определяется двумя свойствами миокарда — релаксацией и ригидностью. С клинической точки зрения диастола — это период, продолжающийся от момента закрытия сторон аортального клапана до возникновения первого тона сердца. Гемодинамически диастолу можно разделить на четыре фазы:

1) изоволюмического расслабления (от момента закрытия створок аортального клапана до начала трансмитрального кровотока);

2) фазу быстрого наполнения;

3) фазу медленного наполнения;

4) систолу предсердий.

Диастолическая дисфункция может возникнуть при изолированных нарушениях любой из фаз и при их сочетании.

В последние годы большое значение в развитии застойной сердечной недостаточности придается нарушениям диастолической функции ЛЖ, обусловленным повышением ригидности (снижением податливости) миокарда во время диастолического наполнения. Причинами диастолической дисфункции ЛЖ являются кардиосклероз, хроническая ишемия, компенсаторная гипертрофия миокарда, воспалительные, дистрофические и другие изменения сердечной мышцы, которые приводят к существенному замедлению релаксации ЛЖ. Имеет значение также величина преднагрузки.

Диастолическую функцию ЛЖ оценивают по результатам исследования трансмитрального диастолического кровотока в импульсном допплеровском режиме. Определяют параметры:

1) максимальную скорость раннего пика диастолического наполнения (Vmax Peak E);

2) максимальную скорость трансмитрального кровотока во время систолы левого предсердия 1 (Vmax Peak A);

3) площадь под кривой (интеграл скорости) раннего диастоличе- ского наполнения (MVVTI Peak E) и 4) предсердной систолы (MV VTI Peak A);

5) отношение максимальных скоростей (или интегралов скорости) раннего и позднего наполнения (Е/А);

6) время изоволюмического расслабления ЛЖ - IVRT(IsoVolumic Relaxation Time);

7) время замедления раннего диастолического наполнения (DT).

Поражение клапанного аппарата сердца

позволяет выявить:

1) сращение створок клапана;

2) недостаточность того или иного клапана (в том числе признаки регургитации);

3) дисфункцию клапанного аппарата, в частности капиллярных мышц, ведущую к развитию пролабирования створок;

4) наличие вегетаций на створках клапанов и другие признаки поражения.

Митральный стеноз

В настоящее время ЭхоКГ является наиболее точным и доступным неинвазивным методом диагностики митрального стеноза. ЭхоКГ позволяет оценить состояние створок МК, площадь левого атриовентрикулярного отверстия (степень стеноза), размеры ЛП, ПЖ. Огромное значение метод имеет в распознавании «афонического» митрального стеноза.

Осмотр больного со стенозом МК начинают с измерения толщины передней и задней створок МК у основания и на концах, а также диаметра кольца МК. Данные показатели важны для решения вопроса о тактике ведения больного, возможности проведения баллонной вальвулопластики или протезирования клапана. Кроме этого необходимо оценить состояние хордального аппарата и комиссур створок. Открытие створок МК может быть измерено в М- и В-модальных режимах. Для определения площади митрального отверстия применяют планиметрический метод, обводя курсором контуры отверстия в момент максимального диастолического раскрытия створок клапана. Митральное отверстие приобретает форму эллипсоида или щели. В норме площадь митрального отверстия составляет 4-6 см². Площадь менее 1 см² считается признаком критического стеноза левого атриовентрикулярного отверстия (значительный стеноз), умеренный стеноз регистрируется при площади митрального отверстия от 1 до 2 см², незначительный стеноз – площадь более 2 см².

При стенозе МК задняя створка спаяна с передней, открытие ограничено. Характерно однонаправленное движение створок МК вследствие спаечного процесса в области комиссур и “парусения” передней сворки в диастолув полость ЛЖ под давлением крови. При значительной кальцификации степень “парусения” может быть небольшой, а степень порока — значительной. При митральном стенозе возрастает давление в полости ЛП, что приводит к его дилатации. Так, при критическом митральном стенозе объем ЛП может превышать 1 литр. При митральном стенозе часто наблюдается мерцание предсердий, при этом в полости и в ушке ЛП могут образовываться тромбы, для визуализации которых более информативна чреспищеводная ЭхоКГ. Другим при- знаком является повышение скорости трансмитрального диастолического потока, а также регистрация ускоренного турбулентного потока через митральный клапан в диатолу. Площадь митрального отверстия может быть рассчитана и по РНТ. PHT (pressure half time) или время полуспада давления — это время, за которое градиент давления уменьшился бы в 2 раза (в норме 50-70мс), при митральном стенозе показатель увеличивается до 110-300 мс и более.

Указанные допплер-эхокардиографические признаки митрального стеноза обусловлены существованием выраженного диастолического градиента давления между левым предсердием и левым желудочком и замедленным снижением этого градиента во время наполнения кровью левого желудочка.

Недостаточность митрального клапана

Недостаточность митрального клапана — это наиболее частая патология митрального клапана, клинические проявления которой нередко слабо выражены или отсутствуют вообще. Различают 2 основные формы митральной регургитации:

1) органическая недостаточность митрального клапана со сморщиванием и укорочением створок клапана, отложением них кальция и поражением подклапанных структур (ревматизм, инфекционный эндокардит, атеросклероз, системные заболевания соединительной ткани);

2) относительная митральная недостаточность, обусловленная нарушением функции клапанного аппарата при отсутствии грубых морфологических изменений створок клапана.

Причинами относительной митральной недостаточности

 пролабирование МК;

 ИБС, в том числе острый инфаркт миокарда;

 заболевание левого желудочка, сопровождающееся его выраженной дилатацией и расширением фиброзного кольца клапана и/или дисфункцией клапанного аппарата (артериальная гипертензия, аортальные пороки сердца, кардиомиопатии);

 разрыв сухожильных нитей;

 кальциноз папиллярных мышц и фиброзного кольца МК.

Единственный достоверный признак органической митральной недостаточности — несмыкание (сепарация) створок МК во время систолы желудочка — выявляется крайне редко. К числу косвенных эхокардиографических признаков митральной недостаточности, отражающих характерные для этого порока гемодинамические сдвиги, относятся:

1) увеличение размеров ЛП;

2) гиперкинезия задней стенки ЛП;

3) увеличение общего ударного объема;

4) гипертрофия миокарда и дилатация полости ЛЖ.

Предложены критерии оценки степени митральной регургитации по процентному соотношению площади струи и площади ЛП, по полученному результату оценивают значимость регургитации:

I степень – < 20% (незначительная);

II степень – 20-40% (умеренная);

III степень – 40-80% (значительная),

IV степень — > 80% (тяжелая).

Аортальный стеноз

Различают три основные формы аортального стеноза:

клапанную (врожденную или приобретенную);

подклапанную (врожденную или приобретенную);

надклапанную (врожденную).

Клапанный стеноз устья аорты может быть врожденным и приобретенным. Врожденный аортальный стеноз диагностируется сразу после рождения ребенка.

Причинами приобретенного аортального стеноза являются: ревматическое поражение створок клапана (наиболее частая причина); при этом створки аортального клапана уплотняются и деформируются по краям, спаиваются по комиссурам, порок часто бывает комбинированным и сочетается с поражением митрального и других клапанов.

Атеросклеротический аортальный стеноз встречается часто.

Сочетается с кальцинозом левого фиброзного атриовентрикулярного кольца, кальцинозом стенок аорты. Изолированный аортальный стеноз, как правило, свидетельствует о неревматической этиологии порока. Створки аортального клапана кальцинированы, спайки по комиссурам отсутствуют. Для данного вида порока характерен возраст старше 65 лет; инфекционный эндокардит. В этом случае можно увидеть кальцианты на концах створок и спаечный процесс вследствие воспаления; первично-дегенеративные изменения клапанов с последующим их обызвествлением.

При аортальном стенозе затрудняется ток крови из левого желудочка в аорту, вследствие чего значительно увеличивается градиент систолического давления между полостью левого желудочка и аортой. Он превышает обычно 20 мм рт. ст., а иногда достигает 100 мм рт. ст. и более.

Вследствие такой нагрузки давлением повышается функция левого желудочка и возникает его гипертрофия, которая зависит от степени сужения аортального отверстия. Так, если в норме площадь аортального отверстия около 3 см² то ее уменьшение вдвое вызывает уже выраженное нарушение гемодинамики. Особенно тяжелые нарушения возникают при уменьшении площади отверстия до 0,5 см² Конечное диастолическое давление может оставаться нормальным или слегка повышаться (до 10- 12 мм.рт.ст.) вследствие нарушения расслабления левого желудочка, что связывают с выраженной гипертрофией его. Благодаря большим компенсаторным возможностям гипертрофированного левого желудочка, сердечный выброс долго остается нормальным, хотя при нагрузке он увеличивается меньше, чем у здоровых лиц.

При появлении симптомов декомпенсации наблюдаются более выраженное повышение конечного диастолического давления и дилатация левого желудочка.

  1. Концентрическая гипертрофия левого желудочка
  1. Диастолическая дисфункция
  1. Фиксированный ударный объем
  1. Нарушения коронарной перфузии
  1. Декомпенсация сердца

Аортальная недостаточность

Оценка степени аортальной регургитации осуществляется с использованием импульсноволнового допплера и подразделяется

на следующие степени:

Ι степень — непосредственного под створками АК;

ΙΙ степень — до конца передней створки МК;

ΙΙΙ степень — до концов папиллярных мышщ;

ΙV степень — до верхушки левого желудочка.

Трикуспидальная недостаточность

Инфекционный эндокардит

  1. Диагностирование наличия вегетаций.
  2. Уточнение локализации вегетаций.
  3. Измерение размеров вегетаций.
  4. Уточнение характера вегетаций (плоские, пролабирующие).
  5. Диагностирование осложнений инфекционного эндокардита.
  6. Установление давности процесса.
  7. Неинвазивная оценка параметров центральной гемодинамики.
  8. Достаточно частое проведение динамических наблюдений.

Артериальная гипертензия

Использование метода эхокардиографии у больных ГБ дает возможность:

выявить объективные признаки гипертрофии ЛЖ и про-

вести ее количественную оценку;

определить размеры камер сердца;

оценить систолическую функцию ЛЖ;

оценить диастолическую функцию ЛЖ;

выявить нарушения регионарной сократимости ЛЖ;

в отдельных случаях — выявить нарушения функции клапанного аппарата, например, при развитии относительной недостаточности МК.

Толщину стенок ЛЖ следует измерять в конце диастолы.

Критерии оценки степени гипертрофии миокарда по толщине стенки ЛЖ в конце диастолы:

1) незначительная гипертрофия — 12 — 14 мм,

2) умеренная — 14 -16 мм,

3) значительная — 16 — 18 мм,

4) выраженная — 18 — 20 мм,

5) высокой степени — более 20 мм.

ИБС

У больных со стенокардией напряжения можно наблюдать кальциноз стенок аорты, левого фиброзного атриовентрикулярного кольца различной степени, нарушение диастолической функции ЛЖ по I типу. ЛП может быть немного дилатировано в длину. Систолическая функция ЛЖ, как правило, сохранена. Зоны нарушения локальной сократимости отсутствуют.

ИМ

В остром периоде при мелкоочаговом инфаркте можно выявить гиперкинез миокарда интактной зоны, нарушение диастолической функции ЛЖ по первому типу с быстрой последующей нормализацией на фоне терапии.

Эхокардиография - широко распространенная современная ультразвуковая методика, применяемая для диагностики многообразной сердечной патологии. В настоящее время используются как обычная чрезгрудная, так и чреспищеводная и внутрисосудистая эхокардиография. Возможности ультразвукового исследования сердца постоянно увеличиваются, на основе сложных электронных технологий возникают все новые методы: вторая гармоника, тканевой допплер, трехмерная эхокардиография, физиологический М-режим и т.д. Это дает возможность все более точного выявления патологии сердца и оценки его функции бескровными способами.

Ключевые слова: эхокардиография, ультразвук, допплер-эхокардиография, ультразвуковой датчик, гемодинамика, сократимость, сердечный выброс.

ЭХОКАРДИОГРАФИЯ

Эхокардиография (ЭхоКГ) предоставляет возможность осмотра сердца, его камер, клапанов, эндокарда и т.д. с помощью ультразвука, т.е. является частью одного из наиболее распространенных способов лучевой диагностики - ультрасонографии.

Эхокардиография прошла достаточно длинный путь развития и совершенствования и теперь превратилась в одну из цифровых технологий, в которых аналоговая ответная реакция - индуцируемый в ультразвуковом датчике электрический ток - преобразуется в цифровую форму. В современном эхокардиографе цифровое изображение представляет собой матрицу, состоящую из чисел, собранных в колонки и строки (Smith H.-J., 1995). При этом каждое число соответствует определенному параметру ультразвукового сигнала (например, силе). Для получения изображения цифровая матрица переводится в матрицу видимых элементов - пикселей, где каждому пикселю в соответствии со значением в цифровой матрице присваивается соответствующий оттенок серой шкалы. Перевод полученного изображения в цифровые матрицы позволяет синхронизировать его с ЭКГ и записывать на оптический диск для последующего воспроизведения и анализа.

ЭхоКГ представляет собой рутинный, простой и бескровный метод диагностики заболеваний сердца, основанный на способности ультразвукового сигнала проникать через ткани и отражаться от них. Отраженный ультразвуковой сигнал затем принимается датчиком.

Ультразвук - это часть звукового спектра выше порога слышимости человеческого уха, волны с частотой свыше 20 000 Гц. Ультразвук генерируется датчиком, который помещается на кожу пациента в прекардиальной области, во втором - четвертом межреберьях слева от грудины, или у верхушки сердца. Могут быть и другие положения датчика (например, эпигастральный или супрастернальный доступы).

Основным компонентом ультразвукового датчика является один или несколько пьезоэлектрических кристаллов. Подача электрического тока на кристалл приводит к изменению его формы, наоборот - его сжатие приводит к генерации электрического тока в нем. Подача электрических сигналов на пьезокристалл приводит к серии его механических колебаний, способных генерировать ультразвуко-

вые волны. Попадание ультразвуковых волн на пьезоэлектрический кристалл приводит к его колебанию и появлению электрического потенциала в нем. В настоящее время производятся датчики ультразвуковых приборов, способные генерировать ультразвуковые частоты от 2,5 МГц до 10 МГц (1 МГц равен 1 000 000 Гц). Ультразвуковые волны генерируются датчиком в импульсном режиме, т.е. каждую секунду испускается ультразвуковой импульс продолжительностью 0,001 с. Остальные 0,999 с датчик работает как приемник ультразвуковых сигналов, отражающихся от структур тканей сердца. К недостаткам метода относится неспособность ультразвука проходить через газовые среды, поэтому для более плотного контакта ультразвукового датчика с кожей применяют специальные гели, наносимые на кожу и/или сам датчик.

В настоящее время для эхокардиографических исследований применяются так называемые фазовые и механические датчики. Первые состоят из множества пьезокристаллических элементов - от 32 до 128. Механические датчики состоят из округлого пластикового резервуара, наполненного жидкостью, где имеются вращающиеся или качающиеся элементы.

Современные ультразвуковые приборы, имеющие программы для диагностики сердечно-сосудистых заболеваний, способны дать четкое изображение структур сердца. Эволюция эхокардиографии привела к использованию в настоящее время различных эхокардиографических методик и режимов: чрезгрудная ЭхоКГ в В- и М-режимах, чреспищеводная ЭхоКГ, допплер-ЭхоКГ в режиме дуплексного сканирования, цветное допплеровское исследование, тканевой допплер, применение контрастных веществ и т.д.

Чрезгрудная (поверхностная, трансторакальная) эхокардиография - рутинная ультразвуковая методика исследования сердца, собственно, та методика, которую чаще всего традиционно называют ЭхоКГ, при которой ультразвуковой датчик контактирует с кожными покровами больного и основные приемы которой будут представлены ниже.

Эхокардиография - это современный бескровный метод, представляющий возможность с помощью ультразвука осматривать и измерять структуры сердца.

При исследовании методом чреспищеводной эхокардиографии

миниатюрный ультразвуковой датчик закреплен на приборе, напоминающем гастроскоп, и расположен в непосредственной близости к базальным отделам сердца - в пищеводе. При обычной, трансторакальной ЭхоКГ, применяются низкочастотные генераторы ультразвука, что увеличивает глубину проникновения сигнала, но снижает разрешающую способность. Нахождение ультразвукового датчика в непосредственной близости от изучаемого биологического объекта позволяет применять высокую частоту, что значительно увеличивает разрешение. Кроме того, таким образом предоставляется возможность осмотра отделов сердца, которые при трансторакальном доступе заслоняются от ультразвукового луча плотным материалом (например, левое предсердие - механическим протезом митрального клапана) с «обратной» стороны, со стороны базальных отделов сердца. Наиболее доступными для осмотра становятся оба предсердия и их ушки, межпредсердная перегородка, легочные вены, нисходящая аорта. В то же время для чреспищеводной эхокардиографии менее доступна верхушка сердца, поэтому должны использоваться оба метода.

Показаниями для чреспищеводной ЭхоКГ являются.

1. Инфекционный эндокардит - при низкой информативности чрезгрудной ЭхоКГ, во всех случаях эндокардита искусственного клапана сердца, при эндокардите аортального клапана для исключения парааортального абсцесса.

2. Ишемический инсульт, ишемическая мозговая атака, случаи эмболий в органы большого круга, особенно у лиц младше 50 лет.

3. Осмотр предсердий перед восстановлением синусового ритма, особенно при наличии клиники тромбоэмболий в анамнезе и при противопоказании к назначению антикоагулянтов.

4. Искусственные клапаны сердца (при соответствующей клинической картине).

5. Даже при нормальной трансторакальной ЭхоКГ, для определения степени и причины митральной регургитации, подозрении на эндокардит.

6. Пороки клапанов сердца, для определения вида хирургического лечения.

7. Дефект межпредсердной перегородки. Для определения размера и вариантов хирургического лечения.

8. Болезни аорты. Для диагностики расслоения аорты, интрамуральной гематомы.

9. Интраоперационный мониторинг для мониторирования функции левого желудочка (ЛЖ) сердца, выявления остаточной регургитации по окончании клапансохраняющей кардиохирургической операции, исключения наличия воздуха в полости ЛЖ по окончании операции на сердце.

10. Плохое «ультразвуковое окно», исключающее трансторакальное исследование (должно быть крайне редким показанием).

Двухмерная эхокардиография (В-режим) по меткому определению Х. Файгенбаума (H. Feigenbaum, 1994) - это «хребет» ультразвуковых кардиологических исследований, потому что ЭхоКГ в В-режиме может применяться как самостоятельное исследование, а все остальные методики, как правило, проводятся на фоне двухмерного изображения, которое служит для них ориентиром.

Чаще всего эхокардиографическое исследование производится в положении обследуемого на левом боку. Датчик сначала располагается парастернально во втором или третьем межреберьях. Из этого доступа прежде всего получают изображение сердца по длинной оси. При эхолокации сердца здорового человека визуализируются (в направлении от датчика к дорзальной поверхности тела) сначала неподвижный объект - ткани передней стенки грудной клетки, затем передняя стенка правого желудочка (ПЖ), далее -

Рис. 4.1. Эхокардиографическое изображение сердца по длинной оси из парастернальной позиции датчика и его схема:

ПГС - передняя грудная стенка; ПЖ - правый желудочек; ЛЖ - левый желудочек; АО - аорта; ЛП - левое предсердие; МЖП - межжелудочковая перегородка; ЗС - задняя стенка левого желудочка

полость ПЖ, межжелудочковая перегородка и корень аорты с аортальным клапаном, полость ЛЖ и левого предсердия (ЛП), разделенные митральным клапаном, задняя стенка ЛЖ и левого предсердия (рис. 4.1).

Для получения изображения сердца по короткой оси датчик в той же позиции поворачивают на 90°, не изменяя его пространственной ориентации. Затем, изменяя наклон датчика, получают срезы сердца по короткой оси на различных уровнях (рис. 4.2а-4.2г).

Рис. 4.2 а. Схема получения изображений срезов сердца по короткой оси на различных уровнях:

АО - уровень аортального клапана; МКа - уровень основания передней створки митрального клапана; МКб - уровень концов створок митрального клапана; ПМ - уровень папиллярных мышц; ВЕРХ - уровень верхушки за основанием папиллярных мыш

Рис. 4.2 б. Эхокардиографический срез сердца по короткой оси на уровне аортального клапана и его схема: ПКС, ЛКС, НКС - правая коронарная, левая коронарная и некоронарная створки аортального клапана; ПЖ - правый желудочек; ЛП - левое предсердие; ПП - правое предсердие; ЛА - легочная артерия

Рис. 4.2 в. Эхокардиографический срез сердца по короткой оси на уровне створок митрального клапана и его схема:

ПЖ - правый желудочек; ЛЖ - левый желудочек; ПСМК - передняя створка митрального клапана; ЗСМК - задняя створка митрального клапана

Рис. 4.2 г. Эхокардиографический срез сердца по короткой оси на уровне папиллярных мышц и его схема:

ПЖ - правый желудочек; ЛЖ - левый желудочек; ПМ - папиллярные мышцы левого желудочка

Для визуализации обоих желудочков сердца и предсердий одновременно (четырехкамерная проекция) ультразвуковой датчик устанавливается у верхушки сердца перпендикулярно к длинной и сагиттальной осям тела (рис. 4.3).

Четырехкамерное изображение сердца можно также получить, расположив датчик в эпигастрии. Если же эхокардиографический датчик, находящийся у верхушки сердца, поворачивают по его оси на 90°, правый желудочек и правое предсердие смещаются за левые отделы сердца, и таким образом получают двухкамерное изображение сердца, в котором визуализируются полости ЛЖ и ЛП (рис. 4.4).

Рис. 4.3. Четырехкамерное эхокардиографическое изображение сердца из позиции датчика у верхушки сердца:

ЛЖ - левый желудочек; ПЖ - правый желудочек; ЛП - левое предсердие; ПП - правое предсердие

Рис. 4.4. Двухкамерное эхокардиографическое изображение сердца из положения датчика у его верхушки: ЛЖ - левый желудочек; ЛП - левое предсердие

В современных ультразвуковых приборах для улучшения качества визуализации в режиме двухмерной ЭхоКГ используются различные технические разработки. Примером такой методики стала так называемая вторая гармоника. С помощью второй гармоники частота отраженного сигнала увеличивается в два раза, и таким образом ком-

пенсируются искажения, которые неизбежно возникают при прохождении ультразвукового импульса через ткани. Такой технический прием уничтожает артефакты и значительно увеличивает контрастность эндокарда в В-режиме, но при этом снижается разрешающая способность метода. Кроме того, при применении второй гармоники створки клапанов и межжелудочковая перегородка могут выглядеть утолщенными.

Чрезгрудная двухмерная эхокардиография позволяет визуализировать сердце в реальном масштабе времени и является ориентиром при исследовании сердца в М-режиме и в режиме ультразвукового допплера.

Ультразвуковое исследование сердца в М-режиме - одна из первых эхокардиографических методик, которая применялась еще до создания приборов, с помощью которых можно получать двухмерное изображение. В настоящее время производятся датчики, способные одновременно работать в В- и М-режимах. Для получения М-режима курсор, отражающий прохождение ультразвукового луча, накладывается на двухмерное эхокардиографическое изображение (см. рис. 4.5-4.7). При работе в М-режиме получают график движения каждой точки биологического объекта, через который проходит ультразвуковой луч. Таким образом, если курсор проходит на уровне корня аорты (рис. 4.5), то сначала получают эхо-ответ в виде прямой линии от передней грудной стенки, затем волнистую линию, отражающую движения передней стенки ПЖ сердца, следом - движение передней стенки корня аорты, за которым видны тонкие линии, отражающие движения створок (чаще всего двух) аортального клапана, движение задней стенки корня аорты, за которой расположена полость ЛП и, наконец, М-эхо задней стенки ЛП.

При прохождении курсора на уровне створок митрального клапана (см. рис. 4.6) (при синусовом ритме сердца обследуемого) получают от них эхосигналы в виде М-образного движения передней створки и W-образного движения задней створки митрального клапана. Такой график движения створок митрального клапана создается, потому что в диастолу, сначала в фазу быстрого наполнения, когда давление в левом предсердии начинает превышать давление наполнения в ЛЖ, кровь проходит в полость и происходит раскрытие створок. Затем, примерно к середине диастолы, давление между

Рис. 4.5. Одновременная запись двухмерного эхокардиографического изображения сердца и М-режима на уровне корня аорты:

ПГС - передняя грудная стенка; ПЖ - правый желудочек; АО - просвет корня аорты; ЛП - левое предсердие

Рис. 4.6. Одновременная запись двухмерного эхокардиографического изображения сердца и М-режима на уровне концов створок митрального клапана:

ПСМК - передняя створка митрального клапана; ЗСМК - задняя створка митрального клапана

предсердием и желудочком выравнивается, движение крови замедляется и створки сближаются (диастолическое прикрытие створок митрального клапана в период диастазиса). И наконец, следует систола предсердий, из-за чего створки раскрываются вновь, а затем закрываются с началом систолы ЛЖ сердца. Аналогично работают и створки трехстворчатого клапана.

Для получения эхокардиографического изображения межжелудочковой перегородки и задней стенки ЛЖ сердца в М-режиме эхокардиографический курсор на двухмерном изображении устанавливают примерно на середине хорд митрального клапана (см. рис. 4.7). В этом случае после изображения неподвижной передней грудной стенки визуализируется М-эхо движения передней стенки ПЖ сердца, затем - межжелудочковой перегородки и далее задней стенки ЛЖ. В полости ЛЖ могут быть видны эхосигналы от движущихся хорд митрального клапана.

Рис. 4.7. Одновременная запись двухмерного эхокардиографического изображения сердца и М-режима на уровне хорд митрального клапана. Пример измерения конечного диастолического (КДР) и конечного систолического (КСР) размеров левого желудочка сердца.

ПГС - передняя грудная стенка; ПЖ - полость правого желудочка;

МЖП - межжелудочковая перегородка; ЗСЛЖ - задняя стенка левого

желудочка; ЛЖ - полость левого желудочка

Смысл ультразвукового исследования сердца в М-режиме заключается в том, что именно в этом режиме выявляются самые тонкие движения стенок сердца и его клапанов. Достижением последнего времени стал так называемый физиологический М-режим, в котором курсор способен вращаться вокруг центральной точки и смещаться, в результате чего имеется возможность оценить количественно степень утолщения любого сегмента ЛЖ сердца (рис. 4.8).

Рис. 4.8. Эхокардиографический срез сердца по короткой оси на уровне папиллярных мышц и исследование локальной сократимости десятого (нижнего промежуточного) и одиннадцатого (переднего промежуточного) сегментов с помощью физиологического М-режима

При визуализации сердца в М-режиме получают графическое изображение движения каждой точки его структур, через который проходит ультразвуковой луч. Это дает возможность оценить тонкие движения клапанов и стенок сердца, а также рассчитать основные параметры гемодинамики.

Обычный М-режим дает возможность достаточно точного измерения линейных размеров левого желудочка в систолу и диастолу (см. рис. 4.7) и расчета показателей гемодинамики и систолической функции левого желудочка сердца.

В повседневной практике для определения сердечного выброса часто рассчитывают объемы ЛЖ сердца в М-режиме эхокардиографического исследования. С этой целью в программу большинства ультразвуковых приборов заложена формула L. Teicholtz (1972):

где V - конечный систолический (КСО) или конечный диастолический (КДО) объемы левого желудочка сердца, а D - его конечный систолический (КСР) или конечный диастолический (КДР) размеры (см. рис. 4.7). Ударный объем сердца в мл (УО) затем вычисляется вычитанием конечного систолического объема ЛЖ сердца из конечного диастолического:

Произведенные с помощью М-режима измерения объемов ЛЖ сердца и расчет ударного и минутного объемов сердца не могут учесть состояния его верхушечной области. Поэтому в программу современных эхокардиографов заложен так называемый метод Симпсона, позволяющий рассчитывать объемные показатели ЛЖ в В-режиме. Для этого ЛЖ сердца разделяется на несколько срезов в четырехкамерной и двухкамерной позициях от верхушки сердца (рис. 4.9), и его объемы (КДО и КСО) могут рассматриваться в качестве суммы объемов цилиндров или усеченных конусов, каждый из которых вычисляется по соответствующей формуле. Современное оборудование дает возможность разбивать полость ЛЖ на 5-20 таких срезов.

Рис. 4.9. Измерение объемов левого желудочка сердца в В-режиме. Два верхних изображения - четырехкамерная проекция, диастола и систола, два нижних изображения - двухкамерная проекция, диастола и систола

Считается, что метод Симпсона дает возможность более точного определения его объемных показателей, т.к. при исследовании в расчет входит область его верхушки, сократимость которой не учитывается при определении объемов по методу Тейкхольца. Минутный объем сердца (МО) вычисляют умножением УО на число сердечных сокращений, а, соотнеся эти величины с площадью поверхности тела, получают ударный и сердечный индексы (УИ и СИ).

В качестве показателей сократимости левого желудочка сердца чаще всего используют следующие величины:

степень укорочения его переднезаднего размера dS:

dS = {(КДР - КСР)/КДР} ? 100%,

скорость циркулярного укорочения волокон миокарда V c f:

V cf = (КДР - КСР)/(КДР? dt) ? с -1 ,

где dt - время сокращения (период изгнания) левого желудочка,

фракция изгнания (ФИ) левого желудочка сердца:

ФИ = (УО/КДО) ? 100%.

Допплер-эхокардиография - еще одна ультразвуковая методика, без которой невозможно представить сегодня исследования сердца. Допплер-ЭхоКГ представляет собой способ измерения скорости и определения направления потоков крови в полостях сердца и сосудах. Метод основан на эффекте К. Дж. Допплера, описанном им в 1842 г. (C.J. Doppler, 1842). Суть эффекта заключается в том, что если источник звука находится в неподвижном состоянии, то длина волны, генерируемая им, и ее частота остаются постоянными. Если источник звука (и любых других волн) движется в направлении воспринимающего устройства или уха человека, то длина волны уменьшается, а ее частота возрастает. Если же источник звука перемещается в сторону от воспринимающего устройства, то длина волны возрастает, а ее частота падает. Классическим примером является свисток движущегося поезда или сирены скорой помощи - когда они приближаются к человеку, то кажется, что высота звука, т.е. частота его волны, возрастает, если же удаляется, то высота звука и его час-

тота снижаются. Это явление используют для определения скорости движения объектов с помощью ультразвука. Если необходимо измерить скорость потока крови, объектом исследования должен стать форменный элемент крови - эритроцит. Однако сам эритроцит не излучает никаких волн. Поэтому ультразвуковой датчик генерирует волны, которые отражаются от эритроцита и принимаются приемным устройством. Допплеровский сдвиг частот представляет собой разность между частотой, отраженной от движущегося объекта и частотой волны, испускаемой генерирующим устройством. Исходя из этого скорость объекта (в нашем случае - эритроцита) будет измеряться с помощью уравнения:

где V - скорость движения объекта (эритроцита), f d - разность между генерируемой и отраженной ультразвуковыми частотами, С - скорость звука, f t - частота генерируемого ультразвукового сигнала, cos θ - косинус угла между направлением ультразвукового луча и направлением движения исследуемого объекта. Поскольку значение косинуса угла от 20° до 0 градусов близко к 1, в этом случае его значением можно пренебречь. Если направление движения объекта перпендикулярно к направлению испускаемого ультразвукового луча, а косинус угла в 90° равен 0, рассчитать такое уравнение невозможно и, следовательно, невозможно определить скорость движения объекта. Для правильного определения скорости крови направление длинной оси датчика должно соответствовать направлению ее потока.

Эхокардиография является наиболее простым, доступным и удобным методом оценки наиболее важных показателей сократимости сердца (прежде всего фракции изгнания ЛЖ) и параметров гемодинамики (ударного объема и индекса, сердечного выброса и индекса). Она является методом диагностики клапанной патологии, дилатации полостей сердца, локального и/или диффузного гипокинеза, кальциноза структур сердца, тромбоза и аневризм, наличия жидкости в полости перикарда.

Основные допплер-ЭхоКГ методики, позволяющие проводить исследования с помощью современных ультразвуковых приборов,

являются различными вариантами сочетания генератора и приемника ультразвуковых волн и воспроизведения скорости и направления потоков на экране. В настоящее время эхокардиограф предоставляет возможность использовать, по крайней мере, три варианта режима ультразвукового допплера: так называемые постоянно-волновой, импульсно-волновой и цветной допплер. Все эти виды допплер-ЭхоКГ исследований проводятся при использовании двухмерного изображения сердца в режиме В-сканирования, которое служит ориентиром для правильной установки курсора того или иного допплера.

Методика постоянно-волновой эходопплерографии представляет собой способ определения скорости движения крови с помощью двух устройств: генератора, непрерывно продуцирующего ультразвуковые волны с постоянной частотой, и также непрерывно работающего приемника. В современном оборудовании оба устройства объединены в один датчик. При таком подходе все попадающие в зону ультразвукового луча объекты, например эритроциты, посылают отраженный сигнал на принимающее устройство, и в результате информация представляет собой сумму скоростей и направлений всех, попавших в зону луча частиц крови. При этом диапазон измерений скорости движения достаточно высок (до 6 м/с и более), однако определить локализацию максимальной скорости в потоке, начало и конец потока, его направление не представляется возможным. Такого объема информации недостаточно для кардиологических исследований, где требуется определение показателей потока крови в конкретной области сердца. Решением проблемы стало создание методики импульсно-волнового допплера.

При импульсно-волновой допплер-эхокардиографии, в отличие от постоянно-волнового режима, один и тот же датчик генерирует ультразвук и принимает его, аналогично используемому при ЭхоКГ: ультразвуковой сигнал (импульс) продолжительностью 0,001 с продуцируется им один раз в секунду, а остальные 0,999 с тот же датчик работает как приемник ультразвукового сигнала. Так же как и при постоянно-волновой допплерографии скорость движущегося потока определяется по разности частот генерируемого и получаемого отраженного ультразвукового сигнала. Однако применение импульсного датчика позволило измерять скорость движения крови в заданном объеме. Использование прерывистого ультразвукового потока, кроме того, позволило употребить для допплерографии тот же датчик, что и для ЭхоКГ. При этом курсор, на котором имеется метка, ограни-

чивающая так называемый контрольный объем, в котором измеряются скорость и направление кровотока, выводится на двухмерное изображение сердца, полученное в В-режиме. Однако импульсная допплер-ЭхоКГ имеет ограничения, связанные с появлением нового параметра - частоты генерации ультразвуковых импульсов (pulsed repetition frequency, PRF). Оказалось, что такой датчик способен определять скорость объектов, которая создает разность генерируемой и отраженной частот, не превышающую 1 /2 PRF. Этот максимальный уровень воспринимаемых частот импульсного допплер-эхокардиографического датчика называется числом Найквиста (число Найквиста равно 1 /2 PRF). Если в исследуемом потоке крови имеются частицы, движущиеся со скоростью, создающей сдвиг (разность) частот, превышающую точку Найквиста, то определить их скорость с помощью импульсной допплерографии невозможно.

Цветное допплеровское сканирование - вид допплеровского исследования, при котором скорость и направление потока кодируется определенным цветом (чаще всего в сторону датчика - красным, от датчика - синим). Цветное изображение внутрисердечных потоков по сути является вариантом импульсно-волнового режима, когда применяется не один контрольный объем, а множество (250-500), формирующих так называемый растр. Если в площади, занимаемой растром, потоки крови являются ламинарными и не выходят по скорости за пределы точки Найквиста, то они окрашиваются в синий или красный цвет в зависимости от своего направления по отношению к датчику. Если скорости потоков выходят за эти пределы, и/или поток становится турбулентным, то в растре появляется мозаичность, желтые и зеленые цвета.

Задачами цветового допплеровского сканирования являются выявление регургитации на клапанах и внутрисердечных шунтов, а также полуколичественная оценка степени регургитации.

Тканевой допплер кодирует в виде цветовой карты скорости и направление движения структур сердца. Допплеровский сигнал, отражающийся от миокарда, створок и фиброзных колец клапанов и т.д., имеет значительно меньшую скорость и большую амплитуду, чем получаемый от частиц в кровотоке. При данной методике скорости и амплитуды сигнала, характерные для кровотока, отсекаются с помощью фильтров, и получают двухмерные изображения или М-режим, на которых с помощью цвета определяются направление и скорость движения любого отдела миокарда или фиброзных колец атриовен-

трикулярных клапанов. Метод используется для выявления асинхронии сокращения (например, при феномене Вольфа-ПаркинсонаУайта), изучения амплитуды и скорости сокращения и расслабления стенок ЛЖ для выявления региональных дисфунций, возникающих, например, при ишемии, в т.ч. при стресс-тесте с добутамином.

При допплер-эхокардиографических исследованиях применяют все разновидности допплеровских датчиков: сначала с помощью импульсного и/или цветного допплера определяют скорость и направление потоков крови в камерах сердца, затем, если выявляется высокая скорость потока, превышающая его возможности, она измеряется с помощью постоянно-волнового.

Внутрисердечные потоки крови имеют в разных камерах сердца и на клапанах свои особенности. В здоровом сердце они практически всегда представляют собой варианты ламинарного движения форменных элементов крови. При ламинарном потоке почти все слои крови движутся в сосуде или полости желудочков или предсердий приблизительно с одной скоростью и в одном направлении. Турбулентный поток подразумевает наличие в нем завихрений, приводящих к разнонаправленному движению его слоев и частиц крови. Турбулентность обычно создается в местах, где возникает перепад давления крови - например при стенозах клапанов, при их недостаточности, в шунтах.

Рис. 4.10. Допплер-эхокардиграфия корня аорты здорового человека в импульсно-волновом режиме. Объяснение в тексте

На рисунке 4.10 демонстрируется допплерограмма в импульсноволновом режиме потока крови в корне аорты здорового человека. Контрольный объем курсора допплера находится на уровне створок аортального клапана, курсор установлен параллельно длинной оси аорты. Допплерографическое изображение представлено в виде спектра скоростей, направленных вниз от нулевой линии, что соответствует направлению потока крови в сторону от датчика, расположенного у верхушки сердца. Выброс крови в аорту происходит в систолу ЛЖ сердца, начало его совпадает с зубцом S, а конец - с концом зубца T синхронно записанной ЭКГ.

Спектр скоростей потока крови в аорте по своим очертаниям напоминает треугольник с пиком (максимальной скоростью), несколько смещенной к началу систолы. В легочной артерии (ЛА) пик кровотока находится практически в середине систолы ПЖ. Большую часть спектра занимает хорошо видимое на рис. 4.10 так называемое темное пятно, отражающее наличие ламинарного характера центральной части кровотока в аорте, и только по краям спектра имеется турбулентность.

Для сравнения на рис. 4.11 представлен пример допплер-ЭхоКГ в импульсно-волновом режиме потока крови через нормально функционирующий механический протез аортального клапана.

Рис. 4.11. Допплер-эхокардиография в импульсно-волновом режиме больного с нормально функционирующим механическим протезом аортального клапана. Объяснение в тексте

На протезах клапанов всегда имеется небольшой перепад давления, который вызывает умеренное ускорение и турбулентность кровотока. На рисунке 4.11 хорошо видно, что контрольный объем допплера, также как и на рис. 4.10, установлен на уровне аортального клапана (в данном случае искусственного). Хорошо видно, что максимальная (пиковая) скорость потока крови в аорте у этого больного значительно выше, а «темное пятно» значительно меньше, преобладает турбулентный кровоток. Кроме того, хорошо различим допплеровский спектр скоростей выше изолинии - это ретроградный поток в направлении верхушки ЛЖ, представляющий собой небольшую регургитацию, которая, как правило, имеется на искусственных клапанах сердца.

Потоки крови на атриовентрикулярных клапанах имеют совершенно другой характер. На рисунке 4.12 представлен допплеровский спектр скоростей тока крови на митральном клапане.

Рис. 4.12. Допплер-эхокардиография трансмитрального потока крови здорового человека в импульсно-волновом режиме. Объяснение в тексте

Метка контрольного объема в данном случае установлена несколько выше точки смыкания створок митрального клапана. Поток представлен двухпиковым спектром, направленным выше нулевой линии к датчику. Поток преимущественно ламинарный. По форме скоростной спектр потока напоминает движение передней створки митрального клапана в М-режиме, что объясняется теми же процессами:

первый пик потока, называемый пиком Е, представляет собой ток крови через митральный клапан в фазу быстрого наполнения, второй пик - пик А - поток крови в течение систолы предсердий. В норме пик Е больше пика А, при диастолической дисфункции вследствие нарушения активного расслабления ЛЖ, повышения его жесткости и т.д., соотношение Е/А на каком-то этапе становится меньше 1. Этот признак широко используется для исследования диастолической функции ЛЖ сердца. Кровоток через правое атриовентрикулярное отверстие имеет сходную форму с трансмитральным.

По ламинарному кровотоку можно рассчитать скорость кровотока. Для этого рассчитывается так называемый интеграл линейной скорости кровотока за один сердечный цикл, который представляет собой площадь, занимаемую допплеровским спектром линейных скоростей потока. Поскольку форма спектра скоростей потока в аорте близка к треугольной, то площадь его можно будет считать равной произведению пиковой скорости на период изгнания крови из ЛЖ, деленному на два. В современных ультразвуковых приборах имеется приспособление (джойстик или трекболл), дающее возможность обводить спектр скоростей, после чего его площадь рассчитывается автоматически. Определение с помощью импульсноволнового допплера ударного выброса крови в аорту представляется важным, т.к. величина измеренного таким способом ударного объема в меньшей степени зависит от величины митральной и аортальной регургитации.

Для подсчета объемной скорости кровотока следует умножить интеграл его линейной скорости на площадь поперечного сечения анатомического образования, в котором он измеряется. Наиболее обоснованным является подсчет УО крови по кровотоку в путях оттока ЛЖ сердца, так как показано, что диаметр, а следовательно, и площадь выходного тракта ЛЖ в течение систолы изменяются мало. В современных ультразвуковых диагностических системах имеется возможность точного определения диаметра путей оттока из ЛЖ в В- или М-режиме (либо на уровне фиброзного кольца аортального клапана, либо от места перехода мембранозной части межжелудочковой перегородки до основания передней створки митрального клапана) с последующим введением его в формулу в программе расчета ударного выброса по ультразвуковому допплеру:

УО = ? S мл,

где - интеграл линейной скорости выброса крови в аорту за один сердечный цикл в см/с, S - площадь выносного тракта левого желудочка сердца.

С помощью импульсно-волновой допплер-ЭхоКГ диагностируются клапанные стенозы и недостаточность клапанов, можно определить степень клапанной недостаточности. Для вычисления перепада (градиента) давления на стенозированном клапане чаще всего приходится использовать постоянно-волновой допплер. Это объясняется тем, что на стенозированных отверстиях возникают очень высокие скорости кровотока, которые слишком велики для импульсно-волнового датчика.

Градиент давления вычисляется с помощью упрощенного уравнения Бернулли:

где dP - градиент давления на стенозированном клапане в мм рт.ст., У - линейная скорость потока в см/с дистальней стеноза. Если в формулу вводится величина пиковой линейной скорости, рассчитывается пиковый (наибольший) градиент давления, если интеграл линейной скорости - средний. Допплер-ЭхоКГ также дает возможность определить площадь стенозированного отверстия.

Рис. 4.13. Допплер-эхокардиография кровотока в левом желудочке в режиме цветного сканирования. Объяснение в тексте

Если в площади растра появляется турбулентный поток и/или потоки с высокими скоростями, это проявляется появлением неравномерного мозаичного окрашивания потока. Цветная допплер-ЭхоКГ дает прекрасное представление о потоках внутри камер сердца и о степени клапанной недостаточности.

На рисунке 4.13 (а также см. на вклейке) демонстрируется цветное сканирование потоков в ЛЖ сердца.

Синий цвет потока отражает движение от датчика, т.е. выброс крови в аорту из ЛЖ. На второй фотографии, представленной на рис. 4.13, поток крови в растре окрашен в красный цвет, следовательно, кровь движется по направлению к датчику, к верхушке ЛЖ - это нормальный трансмитральный поток. Хорошо видно, что потоки практически везде ламинарные.

На рисунке 4.14 (а также см. на вклейке) представлены два примера определения степени недостаточности атриовентрикулярных клапанов с помощью цветного допплеровского сканирования.

В левой части рис. 4.14 представлен пример цветной допплер-эхокардиограммы больного с митральной недостаточностью (регургитацией). Видно, что растр цветного допплера установлен на митральном клапане и над левым предсердием. Хорошо видна струя крови, кодируемая при цветном допплеровском сканировании в виде мозаичного рисунка. Это говорит о наличии высоких скоростей и турбулентности в регургитационном потоке. Справа на рис. 4.14 представлена картина недостаточности трехстворчатого клапана, выявленная с помощью цветного допплеровского сканирования, хорошо видна мозаичность цветового сигнала.

Рис. 4.14. Определение степени регургитации на атриовентрикулярных клапанах с помощью цветной допплер-эхокардиографии. Объяснение в тексте

В настоящее время существует несколько вариантов определения степени клапанной недостаточности. Самый простой из них - это измерение длины струи регургитации относительно анатомических ориентиров. Так, степень недостаточности атриовентрикулярных клапанов может определяться следующим образом: струя заканчивается сразу за створками клапана (митрального или трикуспидального) - I степень, распространяется на 2 см ниже створок - II степень, до середины предсердия - III степень, на все предсердие - IV степень. Степень недостаточности аортального клапана может рассчитываться аналогично: струя регургитации достигает середины створок митрального клапана - I степень, струя аортальной регургитации достигает конца створок митрального клапана -

II степень, струя регургитации достигает папиллярных мышц -

III степень, струя распространяется на весь желудочек - IV степень аортальной недостаточности.

Это самые примитивные, но широко используемые в практике, способы расчета степени клапанной недостаточности. Струя регургитации, будучи достаточно длинной, может быть тонкой и, следовательно, гемодинамически незначимой, может отклоняться в камере сердца в сторону и, будучи гемодинамически значимой, не достигать анатомических образований, определяющих ее тяжелую степень. Поэтому существует множество других вариантов оценки выраженности клапанной недостаточности.

Ультразвуковые методики исследования (УЗИ) сердца постоянно совершенствуются. Все большее распространение получает чреспищеводная ЭхоКГ, о которой сказано выше. Еще меньшего размера датчик применяется при внутрисосудистых УЗИ. При этом, по-видимому, внутрикоронарное определение консистенции атеросклеротической бляшки, ее площади, выраженности кальцификации и т.д. являются единственным прижизненным методом оценки ее состояния. Разработаны методы получения трехмерного изображения сердца с помощью ультразвука.

Способность ультразвукового допплера определять скорость и направление потоков в полостях сердца и в крупных сосудах позволила применить физические формулы и рассчитать с приемлемой точностью объемные параметры кровотока и перепады давления в местах стеноза, а также степень клапанной недостаточности.

Становится повседневной практикой применение нагрузочных проб с одновременной визуализацией структур сердца с помощью ультразвука. Стресс-эхокардиография используется в основном для диагностики ишемической болезни сердца. Метод основан на том факте, что в ответ на ишемию миокард отвечает снижением сократимости и нарушением расслабления пораженной области, которые возникают раньше, чем изменения на электрокардиограмме. Чаще всего в качестве нагрузочного агента применяется добутамин, который увеличивает кислородный запрос миокарда. При этом при малых дозах добутамина увеличивается сократимость миокарда и начинают сокращаться его гибернированные участки (если они имеются). На этом основано выявление с помощью добутамин-стресс-эхокардиографии в В-режиме зон жизнеспособного миокарда. Показанием для проведения стресс-ЭхоКГ с добутамином являются: клинически неясные случаи с малоинформативной электрокардиографической нагрузочной пробой, невозможность теста с физической нагрузкой из-за поражения локомоторного аппарата больного, наличие на ЭКГ изменений, исключающих диагностику преходящей ишемии (блокада левых ветвей пучка Гиса, синдром Вольфа-Паркинсона-Уайта, смещение сегмента ST из-за выраженной гипертрофии левого желудочка), стратификация риска у больных, перенесших ИМ, локализация бассейна ишемии, выявление жизнеспособного миокарда, определение гемодинамической значимости аортального стеноза при низкой сократимости ЛЖ сердца, выявление появления или усугубления митральной регургитации при стрессе.

В настоящее время становятся распространенными нагрузочные тесты с одновременной визуализацией структур сердца с помощью ультразвука. Стресс-эхокардиография используется в основном для диагностики ишемической болезни сердца. Чаще всего в качестве нагрузочного агента применяется вводимый внутривенно добутамин, который увеличивает кислородный запрос миокарда, что при наличии стенозов коронарных артерий вызывает его ишемию. На ишемию миокард отвечает снижением локальной сократимости в зоне стенозированного сосуда, что и выявляется с помощью эхокардиографии.

В настоящей главе представлены наиболее широко применяемые в практической деятельности методы ультразвукового исследования сердца.

Появление миниатюрных ультразвуковых датчиков привело к созданию новых методик (чреспищеводная ЭхоКГ, внутрисосудистое ультразвуковое исследование), при которых имеется возможность визуализации структур, недоступных для чрезгрудной ЭхоКГ.

Эхокардиографическая диагностика конкретных заболеваний сердца будет изложена в соответствующих разделах руководства.

Методика обследования пациента следующая. Пациент ложится на спину, несколько приподняв верхнюю половину тела; с целью выявления различных структур сердца положение тела можно менять (лежа на левом боку, вертикальное положение). Ультразвуковой датчик устанавливается в области II-VI межреберных промежутков слева от грудины, то есть в зоне абсолютной ту-лости сердца. Исследование других участков грудной стенки мало осуществимо вследствие прилегания к сердцу ткани легкого, поглощающей ультразвуковые импульсы. Локация различных структур сердца производится изменением угла наклона датчика.

В некоторых случаях, вследствие индивидуальных топоанатомических отношений сердца и легких, ряд структур лоцировать не удается. Особенно затруднительно применять эту методику при эмфизематозных расширениях легких.

При установке датчика необходимо учитывать конституциональные особенности обследуемых. Так, у лиц астенического типа сложения датчик устанавливается в IV-VI межреберье, а у гиперстеников-во II-IV.
Кроме указанных позиций датчика возможна локация левого желудочка из эпигастральной области.

При установке датчика необходимо помнить, что попадание воздуха между телом и плоскостью датчика резко снижает качество записи. Во избежание этого на кожу в месте установки датчика наносится несколько капель глицерина.
В настоящее время принято регистрировать эхокардиограмму в 5 стандартных и двух правых позициях датчика, которые определяются углом его наклона.

Первая стандартная позиция : ультразвуковой луч направлен через полость левого желудочка на уровне сухожильных нитей митрального клапана или верхней части папиллярных мышц. В этой позиции в зону локации попадает и небольшая часть правого желудочка.
Вторая стандартная позиция : луч проходит через полость левого желудочка на уровне створок митрального клапана.
Третья стандартная позиция : луч проходит через переднюю створку митрального клапана и частично через полость левого предсердия.
Четвертая стандартная позиция : в зону локации попадают устье аорты, аортальные клапаны, полость левого предсердия.
Пятая стандартная позиция : луч направлен через основание и клапаны легочной артерии.

Из описания позиций становится понятным, что первые две стандартные позиции позволяют регистрировать в основном камеру левого желудочка с межжелудочковой перегородкой; в зону локации при этом попадает передняя стенка правого желудочка, межжелудочковая перегородка и задняя стенка левого желудочка. Меняя положение датчика в данной стандартной позиции относительно продольной оси тела, можно увеличить сектор обследования указанных структур. В четвертой позиции можно получить представление о состоянии устья аорты и аортальных клапанов.

В первой стандартной позиции поперечный размер будет несколько меньше, чем в третьей, во второй в зону эхолокации попадают передняя и задняя стенки митрального клапана, в третьей регистрируется только передняя створка двухстворчатого клапана, а за ней задняя стенка левого предсердия, которая, в отличие от стенки желудочка, имеет противоположное движение.

Для более наглядного представления о динамике различных участков миокарда во время сердечного цикла используется М-сканирование, основанное на поступательном движении датчика от одной позиции к другой. При этом на эхокардиограмме регистрируется непрерывная запись различных участков сердца.

- Вернуться в оглавление раздела " "

49104 0

Физические основы эхоКГ

Ультразвук представляет собой распространение продольно-волновых колебаний в упругой среде с частотой >20 000 колебаний в секунду. УЗ-волна — это сочетание последовательных сжатий и разрежений, а полный цикл волны представляет собой компрессию и одно разрежение. Частота УЗ-волны - число полных циклов за определенный про межуток времени. Единицей частоты УЗ-колебаний принят герц (Гц), составляющий одно колебание в секунду. В медицинской практике применяют УЗ-колебания с частотой от 2 до 30 МГц, а соответственно в эхоКГ - от 2 до 7,5 МГц.

Скорость распространения ультразвука в средах с различной плотностью разная; в мягких тканях человека достигает 1540 м/с. В клинических исследованиях ультразвук используют в форме луча, который распространяется в среде различной акустической плотности и при прохождении через гомогенную среду, то есть среду, имеющую одинаковую плотность, структуру и температуру, распространяется прямолинейно.

Пространственная разрешающая способность УЗ-диагностического метода определяется минимальным расстоянием между двумя точечными объектами, на котором их еще можно различить на изображении как отдельные точки. УЗ-луч отражается от объектов, величина которых не менее 1/4 длины УЗ-волны. Известно, что чем выше частота УЗ-колебаний, тем обычно уже ширина луча и меньше его проникающая способность. Легкие являются значительным препятствием на пути распространения ультразвука, поскольку имеют наименьшую из всех тканей глубину половинного затухания. Поэтому трансторакальное эхоКГ (ТТ-эхоКГ)-исследование ограничено областью, где сердце при лежит к передней грудной стенке и не прикрыто легкими.

Для получения УЗ-колебаний используют датчик со специальными пьезоэлектрическими кристаллами, преобразующими электрические импульсы в УЗ-импульсы и наоборот. При по даче электрического импульса пьезокристалл изменяет свою форму и расправляясь генерирует УЗ-волну, а отраженные УЗ-колебания, воспринимаемые кристаллом, изменяют его форму и вызывают появление на нем электрического потенциала. Данные процессы позволяют одновременно использовать УЗ-пьезокристаллический датчик как в качестве генератора, так и приемника УЗ-волн. Электрические сигналы, сгенерированные пьезокристаллом датчика под воздействием отраженных УЗ-волн, затем преобразуются и визуализируются на экране прибора в виде эхограмм. Как известно, параллельные волны отражаются лучше и именно поэтому на изображении более четко видны объекты, находящиеся в ближней зоне, где выше интенсивность излучения и вероятность распространения параллельных лучей перпендикулярно к границам раздела сред.

Регулировать протяженность ближней и дальней зоны можно, изменяя частоту излучения и радиус УЗ-датчика. На сегодня с помощью конвергирующих и рассеивающих электронных линз искусственно удлиняют ближнюю зону и уменьшают расхождение УЗ-лучей в дальней зоне, что позволяет значительно повысить качество получаемых УЗ-изображений.

В клинике для эхоКГ-исследования используют как механические, так и электронные датчики. Датчики с электронно-фазовой решеткой, имеющие от 32 до 128 и более пьезоэлектрических элементов, встроенных в виде решетки, называют электронными. При эхоКГ-исследовании датчик работает в так называемом импульсном режиме, при котором суммарная длительность излучения УЗ-сигнала составляет <1% общего времени работы датчика. Большее время датчик воспринимает отраженные УЗ-сигналы и преобразует их в электрические импульсы, на основе которых затем строится диагностическое изображение. Зная скорость прохождения ультра звука в тканях (1540 м/с), а также время движения ультразвука до объекта и обратно к датчику (2.t), рассчитывают расстояние от датчика до объекта.

Соотношение между расстоянием до объекта исследования, скоростью распространения ультразвука в тканях и временем лежит в основе построения УЗ-изображения. Отраженные от мелкого объекта импульсы регистрируются в виде точки, его положение относительно датчика во времени отображается линией развертки на экране прибора. Неподвижные объекты будут представлены прямой линией, а изменение глубины положения вызовет появление волнистой линии на экране. Данный способ регистрации эхосигналов называется одно мерной эхоКГ. При этом по вертикальной оси на экране эхокардиографа отображается расстояние от структур сердца до датчика, а по горизонтальной - шкала времени. Датчик при одномерной эхоКГ может посылать импульсы с частотой 1000 сигналов в секунду, что обеспечивает высокую временную разрешающую способность М-режима исследования.

Последующим этапом развития метода эхоКГ явилось создание приборов для двухмерного изображения сердца. При этом сканирование структур производится в двух направлениях - как по глубине, так и по горизонтали в режиме реального времени. При проведении двухмерной эхоКГ сечение исследуемых структур отображается в пределах сектора 60-90° и построено множеством точек, изменяющих положение на экране в зависимости от изменения глубины расположения исследуемых структур во времени относительно УЗ-датчика. Известно, что частота кадров при двухмерной эхоКГ-изображения на экране эхоКГ-прибора, как правило, от 25 до 60 в секунду, что зависит от глубины сканирования.

Одномерная эхоКГ

Одномерная эхоКГ - самый первый в историческом плане метод УЗИ сердца. Главным отличительным признаком сканирования в М-режиме является высокое временное разрешение и возможность визуализации мельчайших особенностей структур сердца в движении. В настоящее время исследование в М-режиме осталось весомым дополнением к основной двухмерной эхоКГ.

Суть метода заключается в том, что сканирующий луч, ориентированный на сердце, отражаясь от его структур, принимается датчиком и после соответствующей обработки и анализа весь блок полученных данных воспроизводится на экране прибора в виде УЗ-изображения. Таким образом, на эхограмме в М-режиме вертикальная ось на экране эхокардиографа отображает расстояние от структур сердца до датчика, а по горизонтальной оси отображается время.

Для получения основных эхоКГ-сечений при одномерной эхоКГ УЗИ проводят в парастернальной позиции датчика с получением изображения вдоль длинной оси ЛЖ. Датчик располагают в третьем или четвертом межреберье на 1–3 см слева от парастернальной линии (рис. 7.1).

Рис. 7.1. Направление УЗ-луча при основных срезах одномерной эхоКГ. Здесь и далее: Ао - аорта, ЛП - левое предсердие, МК - митральный клапан

При направлении УЗ-луча вдоль линии 1 (см. рис. 7.1) получают возможность оценить размеры камер, толщину стенок желудочков, а также рассчитать показатели, характеризующие сократительную способность сердца (рис. 7.2) по визуализированной на экране эхоКГ (рис. 7.3). Сканирующий луч должен перпендикулярно пересекать межжелудочковую перегородку и далее проходить ниже краев митральных створок на уровне папиллярных мышц.

Рис. 7.2. Схема определения размеров камер и тол- Схема определения размеров камер и толщины стенок сердца в М-режиме. Здесь и далее: RV - ПЖ; LV - ЛЖ; ПП (RA) - правое предсердие; ЛП (LA) - левое предсердие; МЖП - межжелудочковая перегородка; АК - аортальный клапан; ВТПЖ - выносящий тракт ПЖ; ВТЛЖ - выносящий тракт ЛЖ; dAo - диаметр аорты; КС - коронарный синус; ЗС - задняя стенка (желудочка); ПС - передняя стенка; КДР - конечно-диастолический размер ЛЖ; КСР - конечно-систоличес кий размер ЛЖ; Е - максимальное раннедиастолическое открытие; А - максимальное открытие при систоле предсердий; МСС - митрально-септальная сепарация

Рис. 7.3. ЭхоКГ-изображение на уровне папиллярных мышц

Ориентируясь на полученное изображение по КДР и КСР ЛЖ, рассчитывают его КДО и КСО, используя формулу Teicholtz:

7 D 3

V = -------,

2,4 + D

где V - объем ЛЖ, D - переднезадний размер ЛЖ.

Современные эхокардиографы имеют возможность автоматического расчета показателей сократительной способности миокарда ЛЖ, среди которых следует выделить ФВ, фракционное укорочение (ФУ), скорость циркулярного укорочения волокон миокарда (Vcf). Расчет вышеуказанных показателей производят по формулам:


где dt - время сокращения задней стенки ЛЖ от начала систолического подъема до вершины.

Использование М-режима как метода определения размеров полостей и толщины стенок сердца ограничено из-за затруднения перпендикулярного сканирования относительно стенок сердца.

Для определения размеров сердца наиболее точным методом является секторальное сканирование (рис. 7.4), методика которого описана далее.

Рис. 7.4. Схема измерения камер сердца при двухмерной эхоКГ

Нормальные значения измерений в М-режиме у взрослых приведены в приложении 7.2.

Следует учитывать и искажение некоторых показателей производимых измерений при сканировании в М-режиме у больных с нарушением сегментарной сократимости миокарда ЛЖ.

У этой категории пациентов при расчете ФВ будет учитываться преимущественно сократительная способность задней стенки ЛЖ и базальных сегментов межжелудочковой перегородки, в связи с чем расчет глобальной сократительной функции у этих больных производится иными методами.

С аналогичной ситуацией исследователи сталкиваются и при расчете ФУ и Vcf . Исходя из этого, показатели ФВ, ФУ и Vcf у больных с сегментарными нарушениями при проведении одномерной эхоКГ не используются.

В то же время при проведении одномерной эхоКГ можно выделить признаки, по которым судят о снижении сократительной способности миокарда ЛЖ. К таким признакам относят преждевременное открытие аортального клапана, когда последний открывается до регистрации комплекса QRS на ЭКГ, увеличение более чем на 20 мм расстояния от точки Е (см. рис. 7.2) до межжелудочковой перегородки, а также преждевременное закрытие митрального клапана.

Используя результаты измерений в данной позиции сканирующего луча при одномерной эхоКГ, применяя формулу Penn Convention, можно рассчитать массу миокарда ЛЖ:

Масса миокарда ЛЖ (г) = 1,04 [ (КДР + МЖП + ТЗС) 3 - КДР 3 ] - 13,6,

где КДР - конечно-диастолический размер ЛЖ, МЖП - толщина межжелудочковой перегородки, ТЗС - толщина задней стенки ЛЖ.

При изменении угла наклона датчика и сканировании сердца вдоль линии 2 (см. рис. 7.1) на экране четко визуализируются стенки ПЖ, МЖП, передняя и задняя створки митрального клапана, а также задняя стенка ЛЖ (рис. 7.5).

Рис. 7.5. Одномерное эхоКГ-сканирование на уровне створок митрального клапана

Створки митрального клапана в диастолу совершают характерные движения: передняя - М-образное, а задняя - W-образное. В систолу обе створки митрального клапана дают графику косовосходящей линии. Следует отметить, что в норме амплитуда движения задней створки митрального клапана всегда меньше, чем передней его створки.

Продолжая изменять угол наклона и направив датчик вдоль линии 3 (см. рис. 7.1), получаем изображение стенки ПЖ, межжелудочковой перегородки и, в отличие от предыдущей позиции, только переднюю створку митрального клапана, совершающую М-образное движение, а также стенку левого предсердия.

Новое изменение угла наклона датчика вдоль линии 4 (см. рис. 7.1) приводит к визуализации выносящего тракта ПЖ, корня аорты и левого предсердия (рис. 7.6).

На полученном изображении передняя и задняя стенки аорты представляют собой параллельные волнистые линии. В просвете аорты находятся створки аортального клапана. В норме створки аортального клапана в систолу ЛЖ расходятся, а в диастолу смыкаются, образуя в движении замкнутую кривую в виде коробочки. Используя данное одномерное изображение, определяют диаметр левого предсердия, размер задней стенки левого предсердия, а также диаметр восходящего отдела аорты.

Рис. 7.6. Одномерное эхоКГ-сканирование на уровне створок аортального клапана

Двухмерная эхоКГ

Двухмерная эхоКГ является основным методом УЗ-диагностики в кардиологии. Датчик размещают на передней грудной стенке в межреберных промежутках около левого края грудины либо под реберной дугой или в яремной ямке, а также в зоне верхушечного толчка.

Основные эхоКГ-доступы

Определены четыре основные УЗ-доступы для визуализации сердца:

1) парастернальный (окологрудинный);

2) апикальный (верхушечный);

3) субкостальный (подреберный);

4) супрастернальный (надгрудинный).

Парастернальный доступ по длинной оси

УЗ-срез из парастернального досту па по длинной оси ЛЖ является основным, с него начинают эхоКГ-исследование, по нему ориентируют ось одномерного сканирования.

Парастернальный доступ по длинной оси ЛЖ позволяет выявить патологию корня аорты и аортального клапана, подклапанную обструкцию выхода из ЛЖ, оценить функцию ЛЖ, отметить движение, амплитуду движения и толщину межжелудочковой перегородки и задней стенки, определить структурные изменения или нарушение функции митрального клапана, или его поддерживающих структур, выявить расширение коронарного синуса, оценить левое предсердие и выявить объемное образование в нем, а также провести количественную допплеровскую оценку митральной или аортальной недостаточности и определить мышечные дефекты межжелудочковой перегородки цветовым (или пульсовым) допплеровским методом, а также измерить величину систолического градиента давления между камерами сердца.

Для корректной визуализации датчик размещают перпендикулярно к передней грудной стенке в третьем или четвертом межреберье около левого края грудины. Сканирующий луч направляют по гипотетической линии, соединяющей левую подвздошную область и середину правой ключицы. Структуры сердца, находящиеся ближе к датчику, всегда будут визуализированы в верхней части экрана. Таким образом, сверху на эхоКГ находятся передняя стенка ПЖ, далее - межжелудочковая перегородка, полость ЛЖ с папиллярными мышцами, сухожильными хордами и створками митрального клапана, а задняя стенка ЛЖ визуализируется в нижней части эхоКГ. При этом межжелудочковая перегородка переходит в переднюю стенку аорты, а передняя митральная створка - в заднюю стенку аорты. У корня аорты видно движение двух створок аортального клапана. Правая коронарная створка аортального клапана всегда является верхней, а нижняя створка может быть как левой коронарной, так и некоронарной, что зависит от плоскости сканирования (рис. 7. 7).

В норме движение створок аортального клапана видно нечетко, поскольку они довольно тонкие. В систолу створки аортального клапана видны как две параллельные прилегающие к стенкам аорты полоски, которые в диастолу удается увидеть только по центру корня аорты в месте смыкания. Нормальная визуализация створок аортального клапана бывает при их утолщении или у лиц с хорошим эхоокном.

Рис. 7.7. Длинная ось ЛЖ, парастернальный доступ

Створки митрального клапана обычно хорошо визуализируются и в диастолу совершают характерные движения, а митральный клапан открывается дважды. При активном поступлении крови из предсердия ЛЖ в диастолу митральные створки расходятся и свисают в полость ЛЖ. Затем митральные створки, приближаясь к предсердию, частично закрываются после окончания раннедиастолического наполнения желудочка кровью, что и называют раннедиастолическим прикрытием митрального клапана.

В систолу левого предсердия поток крови во второй раз производит диастолическое открытие митрального клапана, амплитуда которого меньше раннедиастолического. В систолу желудочков створки митрального клапана закрываются, и после фазы изометрического сокращения открывается аортальный клапан.

В норме при визуализации ЛЖ по короткой оси его стенки образуют мышечное кольцо, все сегменты которого равномерно утолщаются и приближаются к центру кольца в систолу желудочка.

При парастернальном доступе по длинной оси ЛЖ выглядит как равносторонний треугольник, в котором вершина - верхушка сердца, а основание - условная линия, соединяющая базальные части противоположных стенок. Сокращаясь, стенки равномерно утолщаются и равномерно приближаются к центру.

Таким образом, парастернальное изображение ЛЖ по его длинной оси дает возможность исследователю оценить равномерность сокращения его стенок, межжелудочковой перегородки и задней стенки. В то же время при данном УЗ-срезе у большинства пациентов не удается визуализировать верхушку ЛЖ и оценить ее сокращение.

При этом УЗ-срезе в предсердно-желудочковой борозде визуализируется коронарный синус - образование меньшего, чем нисходящая аорта, диаметра. Коронарный синус собирает венозную кровь от миокарда и несет ее в правое предсердие, а у некоторых пациентов коронарный синус бывает значительно шире, чем в норме, и его можно спутать с нисходящей аортой. Расширение коронарного синуса в большинстве случаев происходит из-за того, что в него впадает добавочная левая верхняя полая вена, что является аномалией развития венозной системы.

Чтобы оценить выносящий тракт ПЖ и определить движение и состояние створок клапана ЛА, а также увидеть проксимальный отдел ЛА и провести измерения допплеровских показателей потока крови через клапан ЛА, необходимо вывести клапан ЛА вместе с выносящим трактом ПЖ и стволом ЛА. С этой целью из парастернального доступа, получив изображение ЛЖ по длинной оси, датчик необходимо незначительно повернуть по часо вой стрелке и наклонить под острым углом к грудной клетке, направив линию сканирования под левый плечевой сустав (рис. 7.8). Для лучшей визуализации часто помогает положение пациента на левом боку с задержкой дыхания на выдохе.

Данное изображение дает возможность оценить движение створок клапана ЛА, которые двигаются так же, как створки аортального клапана, а в систолу полностью прилегают к стенкам артерии и перестают визуализироваться. В диастолу они смыкаются, препятствуя об ратному току крови в ПЖ. При допплеровском исследовании в норме часто выявляют слабый обратный ток через клапан ЛА, что не характерно для нормального аортального клапана.

Рис. 7.8. Схема выносящего тракта ПЖ, парастернальный доступ по длинной оси. ПЖвын. тракт - выносящий тракт ПЖ; КЛА - клапан ЛА - выносящий тракт ПЖ; КЛА - клапан ЛА

Для визуализации приносящего тракта ПЖ необходимо из точки визуализации ЛЖ по длинной оси направить УЗ-луч в загрудинную область и несколько повернуть датчик по часовой стрелке (рис. 7.9).

Рис. 7.9. Приносящий тракт ПЖ (парастернальная позиция, длинная ось). ЗС - задняя створка трикуспидального клапана, ПС - передняя створка трикуспидального клапана

При данной плоскости сканирования достаточно хорошо определяется положение и движение створок трикуспидального клапана, где передняя створка относительно больше и длиннее, чем задняя или септальная. В норме трикуспидальный клапан практически повторяет движения митрального клапана в диастолу.

Не меняя ориентации датчика, часто удается вывести и место впадения коронарного синуса в правое предсердие.

Парастернальный доступ по короткой оси

В режиме реального времени это изображение дает возможность оценить движение створок митрального и трикуспидального клапанов.

В норме в диастолу они расходятся в противоположные стороны, а в систолу двигаются в направлении друг к другу. При этом следует обратить внимание на равномерность циркулярной сократимости ЛЖ (все его стенки должны сокращаться, приближаясь к центру на одинаковое расстояние, одновременно утолщаясь), движение межжелудочковой перегородки; ПЖ, который на этом срезе имеет серповидную или приближенную к треугольной форму, а его стенка сокращается в том же направлении, что и межжелудочковая перегородка.

Для получения изображения сердца из парастернального доступа по короткой оси необходимо расположить датчик в третьем-четвертом межреберье слева от края грудины под прямым углом к передней грудной стенке, затем поворачиваем датчик по часовой стрелке до тех пор, пока плоскость сканирования не разместится перпендикулярно к длинной оси сердца. Далее, наклоняя датчик к верхушке сердца, получаем разные срезы по короткой оси. На первом срезе получаем парастернальное изображение ЛЖ по короткой оси на уровне папиллярных мышц, которые выглядят, как два круглых эхогенных образова ния, расположенные ближе к стенке ЛЖ (рис. 7.10).

Из полученного изображения поперечного среза сердца на уровне папиллярных мышц плоскость сканирования следует наклонить к основанию сердца, чтобы получить срез ЛЖ по короткой оси на уровне митрального клапана (рис. 7.11). Затем, наклоняя плоскость сканирования к основанию сердца, визуализируем УЗ-плоскость на уровне аортального клапана (рис. 7.12а).

В данной плоскости сканирования корень аорты и створки аортального клапана находятся в центре изображения и в норме при закрытом положении створки образуют характерную фигуру, напоминающую букву Y. Правая коронарная створка расположена сверху. Некоронарная створка прилегает к правому предсердию, а левая коронарная створка - к левому предсердию. В систолу створки аортального клапана откры-ваются, образуя фигуру в виде треугольника (рис. 7.12б). На этом срезе можно оценить движение створок клапана ЛА и их состояние. При этом выносящий тракт ПЖ расположен спереди от кольца аорты, а начальный отдел ствола ЛА виден на коротком протяжении.

Рис. 7.10. Парастернальный доступ, срез по короткой оси на уровне папиллярных мышц


Рис. 7.11. Парастернальный доступ, короткая ось на уровне митрального клапана

Для выявления врожденных аномалий аортального клапана, например бикуспидального аортального клапана, который является наиболее частым врожденным пороком сердца, это сечение является оптимальным.

Нередко при этой же позиции датчика удается определить устье и основной ствол левой коронарной артерии, которые видны на ограниченном протяжении сканирования.

При большем наклоне плоскости сканирования к основанию сердца получаем срез на уровне бифуркации ЛА, что дает возможность оценить анатомические особенности сосуда, диаметр ее ветвей, а также применяется для допплеровского измерения скорости потока крови и определения его характера. Используя цветовую допплерографию при данной позиции сканирующего луча, можно выявить в месте бифуркации ЛА турбулентный ток крови из нисходящей аорты в ЛА,

Рис. 7.12. Аортальный клапан (а - закрытие; б - открытие), парастернальный доступ, короткая ось что является одним из диагностических критериев открытого артериального протока.

Если максимально наклонить датчик к верхушке сердца, можно получить его срез по короткой оси, что дает возможность оценить синхронность сокращения всех сегментов ЛЖ, полость которого на данном срезе в норме имеет округлую форму.

Верхушечный доступ

Верхушечный доступ используется прежде всего для определения равномерности сокращения всех стенок сердца, а также движения митрального и трикуспидального клапанов.

Кроме структурной оценки клапанов и изучения сегментарной сократимости миокарда, при верхушечных изображениях создаются более благоприятные условия для допплеровской оценки кровотока. Именно при таком положении датчика потоки крови идут параллельно или почти параллельно направлению хода УЗ-лучей, что обеспечивает высокую точность измерений. Поэтому с использованием верхушечного доступа проводятся такие допплеровские измерения, как определение скоростей кровотока и градиентов давления на клапанах.

При апикальном доступе визуализация всех четырех камер сердца достигается размещением датчика на верхушке сердца и наклоном линии сканирования до получения искомого изображения на экране (рис. 7.13).

Для достижения наилучшей визуализации следует уложить пациента на левый бок, а датчик установить в область верхушечного толчка параллельно ребрам и направить его на правую лопатку.

В настоящее время наиболее часто используется ориентация эхоКГ-изображения таким образом, чтобы верхушка сердца находилась в верхней части экрана.

Для лучшей ориентации в визуализированной эхоКГ необходимо учитывать, что перегородочная створка трикуспидального клапана прикрепляется к стенке сердца немного ближе к верхушке, чем передняя створка митрального клапана. В полости ПЖ при корректной визуализации определяется модераторный тяж. В отличие от ЛЖ, в ПЖ более выражена трабекулярная структура. Продолжая исследование, опытный оператор без затруднения может вывести изображение нисходящего отдела аорты по короткой оси ниже левого предсердия.

Необходимо помнить, что оптимальная визуализация любой структуры при УЗИ достигается только в том случае, если эта структура размещена перпендикулярно ходу УЗ-луча, если же структура расположена параллельно, то изображение будет менее четким, а при незначительной толщине даже отсутствовать. Именно поэтому довольно часто из верхушечного доступа при четырехкамерном изображении центральная часть межпредсердной перегородки часто кажется отсутствующей. Таким образом для выявления дефекта межпредсердной перегородки необходимо использовать и другие доступы, и учитывать, что при верхушечном четырехкамерном изображении наиболее четко визуализируется меж желудочковая перегородка в ее нижней части. Изменение функционального состояния сегмента межжелудочковой перегородки зависит от состояния кровоснабжающей коронарной артерии. Так, ухудшение функции базальных сегментов межжелудочковой перегородки зависит от состояния правой или огибающей ветви левой коронарной артерии, а верхушечный и средний сегменты перегородки - от передней нисходящей ветви левой коронарной артерии. Соответственно функциональное состояние боковой стенки ЛЖ зависит от сужения или окклюзии огибающей ветви.

Рис. 7.13. Верхушечное четырехкамерное изображение

Для того чтобы получить верхушечное пятикамерное изображение, необходимо после получения апикального четырехкамерного изображения, наклонив датчик к передней брюшной стенке, сориентировать плоскость эхоКГ-среза под правую ключицу (рис. 7.14).

При допплер-эхоКГ верхушечное пятикамерное изображение используется для расчета основных показателей кровотока в выносящем тракте ЛЖ.

Определив в качестве исходной позиции датчика четырехкамерное апикальное изображение, легко визуализировать верхушечное двухкамерное изображение. С этой целью производят ротацию датчика против часовой стрелки на 90° и наклоняют латерально (рис. 7.15).

ЛЖ, который находится вверху, отделяют от предсердия обе митральные створки. Стенка желудочка, находящаяся на экране справа, является передней, а слева - заднедиафрагмальной.

Рис. 7.14. Пятикамерное верхушечное изображение

Рис. 7.15. Апикальная позиция, левое двухкамерное изображение

Поскольку в данной позиции довольно четко визуализируются стенки ЛЖ, левое двухкамерное изображение из апикального доступа используется для оценки равномерности сокращения стенок ЛЖ.

При таком изображении в динамике можно корректно оценить работу митрального и аортального клапанов.

Используя «кинопетлю» в данной эхоКГ-позиции, также можно определить сегментарную сократимость межжелудочковой перегородки и заднебоковой стенки ЛЖ и исходя из этого косвенно оценить кровоток в огибающей ветви левой коронарной артерии, а также частично и в правой коронарной артерии, которые участвуют в кровоснабжении заднебоковой стенки ЛЖ.

Субкостальный доступ

Наиболее частой причиной шунтирующих потоков и их акустических эквивалентов являются дефекты межпредсердной перегородки. По разным статистическим данным, эти пороки составляют 3–21% случаев всех врожденных пороков сердца. Известно, что это наиболее часто развивающийся порок во взрослой популяции.

При субкостальном четырехкамерном изображении (рис. 7.16) положение межпредсердной перегородки по отношению к ходу лучей стано вится приближенным к перпендикулярному. Поэтому именно из этого доступа достигается лучшая визуализация межпредсердной перегородки и про водится диагностика ее дефектов.

Для визуализации всех четырех камер сердца из субкостального доступа датчик размещают у мечевидного отростка, а плоскость сканирования ориентируют вертикально и наклоняют вверх, чтобы угол между датчиком и брюшной стенкой составлял 30–40° (см. рис 7.16). При этом срезе над сердцем определяется и паренхима печени. Особенностью данного УЗ-изображения является то, что увидеть верхушку сердца не представляется возможным.

Прямым эхоКГ-признаком дефекта является выпадение участка перегородки, который на изображении в формате серой шкалы представляется черным относительно белого.

В практике эхоКГ-исследования наибольшие трудности возникают при диагностике дефекта венозного синуса (sinus venosus), особенно высоких дефектов, локализующихся у верхней полой вены.

Как известно, существуют особенности УЗ-ди агностики дефекта венозного синуса, связанные с визуализацией межпредсердной перегородки. Для того чтобы увидеть данный сектор межпредсердной перегородки из исходного положения датчика (при котором была получена субкостальная визуализация четырех камер сердца), необходимо повернуть его по часовой стрелке с ориентацией плоскости сканирующего луча под правое грудинно-ключичное соединение. На полученной эхоКГ хорошо виден переход межпредсердной перегородки в стенку верхней полой вены

Рис. 7.16. Субкостальная позиция длинной оси с визуализацией четырех камер сердца


Рис. 7.17. Место впадения верхней полой вены в правое предсердие (субкостальная позиция)

Следующим этапом обследования пациента является получение изображения как четырех камер сердца, так и восходящей аорты при субкостальном доступе (рис. 7.18). Для этого линию сканирования датчика из исходной точки наклоняют еще выше.

Следует отметить, что данный эхоКГ-срез является наиболее корректным и часто используемым при обследовании больных с эмфиземой легких, а также у пациентов с ожирением и узкими межреберными промежутками для исследования аортального клапана.

Рис. 7.18. Субкостальная позиция длинной оси с визуализацией четырех камер сердца и восходящей аорты

Для получения изображения по короткой оси из субкостального доступа датчик следует повернуть по часовой стрелке на 90°, исходя из позиции визуализации субкостального четырехкамерного изображения. В результате выполненных манипуляций можно получить ряд графических срезов на разных уровнях сердца по короткой оси, наиболее информативными из которых являются срезы на уровне папиллярных мышц, митрального клапана (рис. 7.19а) и на уровне основания сердца (рис. 7.19б).

Далее для визуализация изображения нижней полой вены по ее длинной оси из субкостального доступа датчик ставят в эпигастральную ямку, а плоскость сканирования ориентируют сагиттально по срединной линии, несколько наклонив вправо. При этом нижняя полая вена визуализируется сзади от печени. На вдохе нижняя полая вена частично спадается, а на выдохе, когда возрастает внутригрудное давление, становится шире.

Определение изображения брюшного отдела аорты по ее длинной оси требует ориентации плоскости сканирования сагиттально, при этом датчик располагают в эпигастральной ямке и слегка наклоняют влево. В данной позиции видно характерную пульсацию аорты, а спереди от нее хорошо визуализируется верхняя брыжеечная артерия, которая, отделившись от аорты, сразу поворачивает вниз и идет параллельно к ней.

Рис. 7.19. Субкостальная позиция, короткая ось, срез на уровне: а) митрального клапана; б) основания сердца

Если повернуть плоскость сканирования на 90°, то можно увидеть сечение обо их сосудов по короткой оси. На эхоКГ нижняя полая вена находится справа от по звоночника и имеет форму, приближенную к треугольнику, при этом аорта располагается слева от позвоночника.

Супрастернальный доступ

Супрастернальный доступ используют в основном для обследования восходящего отдела грудной аорты и начальной части ее нисходящего отдела.

Размещая датчик в яремной ямке, плоскость сканирования направляют вниз и ориентируют по ходу дуги аорты (рис. 7.20).

Под горизонтальной частью грудной аорты визуализируется сечение правой ветви ЛА по короткой оси. При этом можно хорошо вывести отхождение артериальных ветвей от дуги аорты: плечеголовного ствола, левых сонной и подключичной артерий.

Рис. 7.20. Двухмерное изображение дуги аорты по длинной оси (супрастернальное сечение)

В данной позиции наиболее корректно визуализируется весь восходящий отдел грудной аорты, с аортальным клапаном включительно и частично ЛЖ, при наклоне плоскости сканирования немного вперед и направо. Из этой исходной точки плоскость сканирования поворачивают по часовой стрелке, что дает возможность получить изображение поперечного (по короткой оси) сечения дуги аорты.

На данной эхоКГ горизонтальный отдел дуги аорты имеет вид кольца, а справа от него находится верхняя полая вена. Далее под аортой видна правая ветвь ЛА по длинной оси и еще глубже - левое предсердие. В некоторых случаях удается увидеть место впадения всех четырех легочных вен в левое предсердие. Установив датчик в правую надключичную ямку и направив сканирующую плоскость вниз, можно визуализировать верхнюю полую вену на всем ее протяжении.

Рекомендации по проведению эхоКГ у пациентов с сердечной патологией в соответствии с руководством по клиническому применению эхоКГ ACC, AHA и Американского эхокардиологического общества (ASE) (Cheitlin M.D., 2003) представлены в табл. 7.1, 7.3–7.20.

Таким образом, используя разные доступы к сердцу, можно получить многочисленные срезы, которые дают возможность оценить анатомическое строение сердца, размеры его камер и стенок, взаимное расположение сосудов.

Таблица 7.1

*ТТ-эхоКГ должна быть методом первичного выбора в этих ситуациях, а чреспищеводную эхоКГ следует использовать только, если исследование неполное или необходима дополнительная информация. Чреспищеводная эхоКГ - методика, показанная при исследовании аорты, особенно в неотложных ситуациях.

Классификация эффективности и целесообразности применения определенной процедуры

Класс І - наличие консенсуса экспертов и/или доказательства эффективности, целесообразности применения и благоприятного действия процедуры.

Класс II - спорные доказательства и отсутствие консенсуса экспертов относительно эффективности и целесообразности процедуры:

- ІІа - «чаша весов» доказательств/консенсуса экспертов перевешивает в сторону эффективности и целесообразности процедуры;

- ІІb - «чаша весов» доказательств/консенсуса экспертов перевешивает в сторону неэффективности и нецелесообразности применения процедуры.

Класс III - наличие консенсуса экспертов и/или доказательств относительно неэффективности и нецелесообразности применения процедуры, а в отдельных случаях даже ее вред.

К сожалению, не всегда удается получить качественное изображение из разных доступов, описанных в этом разделе, особенно если сердце прикрыто легкими, межреберные промежутки узкие, живот с толстым слоем подкожной жировой клетчатки, а шея короткая и толстая, то эхоКГ-исследование становится затруднительным.

Допплер-эхоКГ

Суть метода основана на эффекте Допплера и применительно к эхоКГ заключается в том, что отраженный от движущего объекта УЗ-луч меняет свою частоту в зависимости от скорости движения объекта. Особенность сдвига частоты УЗ-сигнала зависит от направления движения объекта: если объект движется от датчика, то частота отраженного от объекта ультразвука будет ниже, чем частота ультразвука, который был послан датчиком. И соответственно если объект движется в направлении к датчику, то частота УЗ-сигнала в отраженном луче будет выше, чем исходная.

При этом, анализируя изменения частоты ультразвука, отраженного от движущегося объекта, определяют:

Скорость объекта, которая тем больше, чем значительнее частотный сдвиг посланного и отраженного УЗ-сигнала;

Направление движения объекта.

Изменение частоты отраженного ультразвука зависит и от угла между направлением движения объекта и направлением сканирующего УЗ-луча. В то же время частотный сдвиг будет наибольшим, когда оба направления совпадают. Если посланный УЗ-луч ориентирован перпендикулярно к направлению движения объекта, изменения часто ты отраженного ультразвука не произойдет. Таким образом, для большей точности выполняемых измерений необходимо стремиться направлять УЗ-луч параллельно линии движения объекта. Естественно, что выполнить это условие бывает сложно, а иногда просто невозможно. По этой причине современные эхокардиографы оснащены программой угловой коррекции, которая автоматически учитывает поправку на угол при расчете градиента давления, а также скорости кровотока.

Для этой цели и используется уравнение Допплера, которое позволяет корректно определять скорость потока крови с учетом поправки на угол между направлением кровотока и линией излучаемого ультразвука:

где V - скорость кровотока, с - скорость распространения ультразвука в среде (постоянная величина, равная 1560 м/с), Δf - сдвиг частоты УЗ-сигнала, f 0 - исходная частота излученного ультразвука, Θ - угол между направлением кровотока и направлением излученного ультразвука.

При определении скорости кровотока в сердце и в сосудах в роли движущего объекта выступают эритроциты, которые движутся как относительно УЗ-луча датчика, так и относительно отраженного сигнала. Именно поэтому, как видно из уравнения, коэффициент в числителе равен 2, поскольку сдвиг частоты УЗ-сигнала происходит дважды.

Таким образом, частотный сдвиг зависит и от частоты посылаемого сигнала: чем она ниже, тем большие скорости могут быть измерены, что зависит от датчика, частоту которого необходимо выбирать наименьшую.

В настоящее время существует несколько видов допплеровского исследования, а именно: импульсно-волновая допплер-эхоКГ (Pulsed wave Doppler), постоянно-волновая допплер-эхоКГ (Continuous wave Doppler), тканевое допплеровское исследование (Doppler Tissue Imaging), энергетическое допплеровское исследование (Colour Doppler Energy), цветовая допплер-эхоКГ (Colour Doppler).

Импульсно-волновая допплер-эхоКГ

Суть метода импульсно-волновой допплерэхоКГ заключается в том, что в датчике используется только один пьезокристалл, который служит одновременно и для генерации УЗ-волны, и для приема отраженных сигналов. При этом излучение идет в виде серии импульсов, очередной излучается после регистрации отраженных предыду-щих УЗ-колебаний. Посланные УЗ-импульсы, частично отражаясь от объекта, скорость движения которого измеряется, меняют частоту колебаний и регистрируются датчиком. С учетом известной скорости распространения звуковой волны в среде (1540 м/с) аппарат обладает программной возможностью избирательного анализа только волн, отраженных от объектов, находящихся на определенном расстоянии от датчика в так называемом контрольном или пробном объеме. Применяя импульсно-волновую допплер-эхоКГ на большой глубине, корректно можно определить только кровоток, скорость которого не превышает 2 м/с. В то же время на меньших глубинах удается проводить достаточно точные измерения более скоростных потоков крови.

Таким образом, преимущество метода импульсно-волновой допплер-эхоКГ заключается в том, что он предоставляет возможность опре-делять скорость, направление и характер потока крови в конкретной зоне установленного объема.

Существует прямая зависимость между частотой повторения УЗ-сигналов и максимальной скоростью потока крови. Максимальная скорость кровотока, измеряемая данным методом, ограничена пределом Найквиста. Это связано с возникновением искажения допплеровского спектра при вычислении скорости, превосходящей предел Найквиста. В данном случае визуализируется только часть кривой допплеровского спектра с обратной стороны от линии нулевой скорости, а другая часть спектра нивелируется на уровне скорости, соответствующей пределу Найквиста.

В связи с этим для корректности проводимых измерений снижают частоту повторения излучаемых импульсов при исследовании потоков крови в опрашиваемой зоне, находящейся далеко от датчика. Для исключения искажения измерений на спектральной допплеровской кривой при выполнении допплеровского исследования импульсной волной снижается значение максимальной скорости кровотока, которую можно определить. На экране эхоКГ-график допплеровского спектра представлен как развертка ско-рости во времени. При этом на графике выше изолинии отображен кровоток, направленный к датчику, а ниже изолинии - от датчика. Таким образом, сам график состоит из совокупности точек, яркость которых прямо пропорциональна количеству движущихся с определенной скоростью эритроцитов в данный момент времени. Изображение графика допплеровского спектра скоростей при ламинарном кровотоке характеризуется малой шириной, обусловленной небольшим разбросом скоростей, и представляет собой относительно узкую линию, состоящую из точек с примерно одинаковой яркостью.

В отличие от ламинарного типа кровотока, для турбулентного характерен больший разброс скоростей и увеличение ширины видимого спектра, поскольку возникает в местах ускорения потока крови при сужении просвета сосудов. При этом график допплеровского спектра состоит из множества точек разной яркости, находящихся на различном расстоянии от базовой линии скорости, и визуализируется на экране в виде широкой линии с размытыми контурами.

Необходимо отметить, что для корректной ориентации УЗ-луча при выполнении допплеровского исследования в эхоКГ-аппаратах предусмотрен звуковой режим, обеспеченный методом трансформации допплеровских частот в обычные звуковые сигналы. Для оценки скорости и характера кровотока через митральный и трикуспидальный клапаны методом импульсноволновой допплер-эхоКГ датчик ориентируют так, чтобы получить верхушечное изображение с размещением контрольного объема на уровне створок клапанов с небольшим смещением к верхушке от фиброзного кольца (рис. 7.21).

Рис. 7.21. Импульсно-волновая допплер-эхоКГ (митральный кровоток)

Исследование кровотока через митральный клапан при импульсно-волновой допплер-эхоКГ проводят, используя не только четырех-, но и двухкамерные апикальные изображения. Разместив контрольный объем на уровне створок митрального клапана, определяют максимальную скорость трансмитрального кровотока. В норме диастолический митральный кровоток является ламинарным, а спектр кривой митрального кровотока расположен выше базовой линии и имеет две скоростные вершины. Первый пик в норме выше и соответствует фазе быстрого наполнения ЛЖ, а второй пик скорости меньше первого и является отображением кровотока при сокращении левого предсердия. Максимальная скорость трансмитрального кровотока в норме находится в пределах 0,9-1,0 м/с. При исследовании кровотока в аорте при верхушечной позиции датчика, на нормальном графике скорости потока крови спектр кривой аортального кровотока находится ниже изолинии, поскольку кровоток направлен от датчика.Максимальная скорость отмечается на уровне аортального клапана, ибо это самое узкое место.

Если во время допплеровского исследования пульсовой волной выявлен высокоскоростной кровоток при митральной регургитации, то корректное определение скорости кровотока становится невозможным из-за предела Найквиста. В этих случаях для точного определения потоков с высокой скоростью используют постоянноволновую допплер-эхоКГ.

Постоянно-волновая допплер-эхоКГ

При допплеровском исследовании постоянной волной один или несколько пьезоэлектрических элементов непрерывно излучают УЗ-волны, а другие пьезоэлементы непрерывно принимают отраженные УЗ-сигналы. Основное преимущество метода состоит в возможности исследования высокоскоростного кровотока по всей глубине исследования на пути сканирующего луча без искажения допплеровского спектра. Однако недостатком данного допплеровского исследования является невозможность пространственной локализации по глубине места кровотока.

При постоянно-волновой допплер-эхоКГ используют два типа датчиков. Применение одного из них дает возможность одновременно визуализировать двухмерное изображение в режиме реального времени и исследовать кровоток, направив УЗ-луч в место диагностического интереса. К сожалению, эти датчики из-за довольно больших размеров неудобно использовать у пациентов с узкими межреберными промежутками и затруднительно ориентировать УЗ- луч максимально параллельно кровотоку. При использовании датчика с маленькой поверхностью появляется возможность достичь хорошего качества допплеровского исследования постоянной волной, но без получения двухмерного изображения, что может создать сложности для исследователя при ориентации сканирующего луча.

Для обеспечения точной направленности УЗ-луча необходимо запомнить местоположение двухмерного датчика перед переключением на датчик пальчикового типа. Также важно знать отличительные черты графики потока при различной патологии. В частности, поток трикуспидальной регургитации, в отличие от митральной, ускоряется при вдохе и имеет более длительное время полуснижения давления. При этом следует не забывать использовать различные доступы. Исследование кровотока при аортальном стенозе производят как при апикальном, так и при супрастернальном доступе.

Полученная информация предоставляется в акустическом и графическом виде, при котором отображается развертка скорости потока во времени.

На рис. 7.22 отображено апикальное изображение ЛЖ по длинной оси, где направленность УЗ-волны в просвет аортального клапана отображена в виде сплошной линии. График скоростей кровотока представляет собой кривую с полностью заполненным просветом под рамкой и отображает все скорости, определяемые по ходу УЗ-луча. Максимальная скорость регистрируется по четкому краю параболы и отображает скорость кровотока в отверствии аортального клапана. При нормальном кровотоке спектр кривой находится под базовой линией, поскольку поток крови через аортальный клапан направлен от датчика.

Рис. 7.22. Измерение аортального потока при постоянно-волновой допплер-эхоКГ

Известно, что чем больше разница давления выше и ниже места сужения, тем больше скорость в области стеноза, и наоборот; исходя из этого, можно определить градиент давления. Эта закономерность используется для расчета градиента давления по скорости кровотока в месте стенозирования. Данные расчеты производят по формуле Бернулли:

ΔР = 4 V 2 ,

где ΔР - градиент давления (м/с), V - максимальная скорость потока (м/с).

Таким образом, определив максимальную скорость и рассчитав максимальный систолический градиент давления между желудочком и соответствующим сосудом, можно оценить тяжесть аортального стеноза и стеноза клапана ЛА.

В случае определения тяжести митрального стеноза пользуются средним диастолическим градиентом давления на митральном клапане.

Данный градиент рассчитывают по средней скорости диастолического кровотока через митральное отверстие. Современные эхокардиографы оснащены программами автоматического расчета средней скорости диастолического кровотока и градиента давления. Для этого просто необходимо обвести спектр кривой трансмитрального кровотока.

Для больных с дефектом межжелудочковой перегородки величина градиента систолического давления между ЛЖ и ПЖ имеет большое прогностическое значение. При расчете данного градиента систолического давления определяют скорость кровотока через дефект из одной камеры сердца в другую. С этой целью допплеровское исследование постоянной волной проводят при ориентации датчика таким образом, чтобы УЗ-луч проходил через дефект по возможности максимально параллельно кровотоку.

Таким образом, постоянно-волновую допплерэхоКГ эффективно применяют для определения высоких мгновенных скоростей кровотока. Кроме того, метод широко используется для определения значений интеграла скорость/время, а также максимальной скорости кровотока, вычисления градиента давления и времени снижения градиента давления вдвое. При помощи допплеровского исследования постоянной волной проводят измерения градиента давления в ЛА, вычисление параметра dp/dt обоих желудочков сердца и измерение динамического градиента давления при обструкции выносящего тракта ЛЖ.

Цветовая допплер-эхоКГ

Метод цветовой допплер-эхоКГ дает возможность автоматически определять характер и скорость кровотока одновременно в большом количестве то чек в пределах заданного сектора, а информация подается в виде цвета, который накладывается на основное двухмерное изображение. Каждая точка кодируется определенным цветом в зависимости от того, в каком направлении и с какой скоростью в ней происходит движение эритроцитов. При размещении точек достаточно плотно и оценке в режиме реального времени можно получить изображение, воспринимаемое как движение цветных потоков через сердце и сосуды.

Принцип цветового допплеровского картирования по сути не отличается от импульсноволновой допплер-эхоКГ. Отличие заключается лишь в режиме представления полученной информации. При допплеровском исследовании импульсной волной проводится перемещение контрольного объема по двухмерному изображению в участках, представляющих интерес для определения кровотока, а полученная информация отображается в виде графика скоростей кровотока. Разными оттенками красного и си-него цветов обычно отображают направленность кровотока, а также среднюю скорость и наличие искажения допплеровского спектра.

Направление потока в одном направлении может подаваться в красно-желтом, а в другом - сине-голубом цветовом спектре. Учитываются только два основных направления: к датчику и от датчика. Обычно потоки крови, направленные к датчику, на эхоКГ представляются красным цветом, а направленные от датчика – синим (рис. 7.23).

Скорость кровотока дифференцируется по яркости цветовой гаммы на полученном изображении. Чем ярче цвет, тем выше скорость потока. Если скорость равна нулю и кровоток отсутствует, на экране визуализируется черный цвет.

Рис. 7.23. Цветовая допплер-эхоКГ, верхушечный доступ: а) диастола; б) систола

Во всех современных эхокардиографах на экране приводится цветовая шкала, отображающая соответствие направления и скорости кровотока тому или иному цветовому спектру.

При турбулентных потоках к основным цветам - красному и синему - обычно добавляются оттенки зеленого, что при цветовом картировании проявляется мозаичностью окраски. Такие оттенки появляются при регистрации регургитации или потоков стенозированных просветов. Как и любой метод, цветовая допплер-эхоКГ имеет свои недостатки, основными из которых являются относительно низкая временная разрешающая способность, а также невозможность отображения высокоскоростных потоков крови без искажений. Последний недостаток связан с явлением переброса, которое проявляется в том случае, если определяемая скорость кровотока превышает ограничение Найквиста и визуализируется на экране через белый цвет. Необходимо отметить, что при использовании режима цветового картирования качество двухмерного изображения нередко ухудшается.

При исследовании разных отделов аорты можно визуализировать смену направления потоков по отношению к сканирующему лучу датчика. По отношению к УЗ-лучу в восходящем отделе аорты поток крови идет во встречном направлении и отображается оттенками красного цвета. В нисходящем отделе аорты отмечается противоположная направленность кровотока (от сканирующего луча), что соответственно визуализируется оттенками синего цвета. Если кровоток будет иметь направление, перпендикулярное УЗ-лучу, то вектор скорости при проецировании на направление сканирования дает нулевое значение. Этот участок отображается в виде полоски черного цвета, разделяющей красный и синий цвет, что указывает на скорость, равную нулю. Таким образом, для корректного восприятия отображаемой цветовой гаммы необходимо четко представлять направленность потоков относительно сканирующего УЗ-луча.

Тканевой допплер

Суть метода заключается в исследовании движения миокарда с помощью модифицированной обработки допплеровского сигнала. Объектом исследования являются движущиеся стенки мио карда, дающие кодированное цветом изображение в зависимости от направленности их движения аналогично допплеровскому исследованию потоков. Движение исследуемых структур сердца от датчика отображается оттенками голубого цвета, а к датчику - оттенками красного. Изображение миокарда методом допплер-эхоКГ в клинической практике можно использовать для оценки функции миокарда, анализа нарушения регионарной сократимости миокарда (благодаря возможности одновременной регистрации средней скорости движения всех стенок ЛЖ), количественной оценки систолического и диастолического движения миокарда, визуализации других движущихся тканевых структур сердца.

Энергетическое допплеровское исследованиеИспользуя оригинальную методику при энергетическом допплеровском исследовании, удается оценить интенсивность потока благодаря анализу отраженного УЗ-сигнала от движущихся эритроцитов. Информация отображается в цвете, как бы накладываясь на черно-белое двухмерное изображение обследуемого органа, определяя сосудистое русло. Этот способ допплеровского исследования активно вошел в клиническую медицину и довольно широко применяется в оценке кровенаполнения органов и степени их перфузии. Диагностические возможности данного метода проявились в исследовании сосудистого русла при тромбозе глубоких вен голени и нижней полой вены, дифференциации окклюзии внутренней сонной артерии от стеноза со слабым кровотоком, выявлении хода позвоночных артерий, изображении сосудов с выраженной извилистостью, контурировании бляшек, сужающих просвет сосудов, а также транскраниальном изображении сосудов головного мозга.

Цветовой М-режим

При методике цветового М-режима на экране эхокардиографа визуализируется изображение, соответствующее стандартному М-режиму с отображением скорости и направления кровотока, как при цветовой допплер-эхоКГ. Цветовое представление потоков крови нашло свое применение при оценке диастолического расслабления миокарда, а также для определения локализации и продолжительности турбулентных потоков.

Чреспищеводная эхоКГ

Чреспищеводная эхоКГ - эхоКГ- и допплерэхоКГ-исследование сердца с помощью эндоскопического зонда со встроенным УЗ-датчиком.

Пищевод непосредственно прилежит к левому предсердию, которое размещено кпереди от него, а нисходящая аорта - кзади. В результате расстояние от апертуры чреспищеводного датчика до структур сердца составляет несколько сантиметров и менее, в то время как у ТТ-датчика может достигать многих сантиметров. Это один из определяющих факторов получения высококачественного изображения. По данным специальной группы ACC/AHA, более чем в половине случаев чреспищеводная эхоКГ дает новую или дополнительную информацию о структуре и функции сердца, уточняет прогноз и тактику лечения. Представляет также немедленные результаты в масштабе реального времени об эффективности реконструктивных операций, про-тезировании клапанов сразу после прекращения искусственного кровообращения. Изображение, полученное через пищевод, позволяет преодолеть ограничения, типичные для стандартной ТТ-эхоКГ, связанные с экстракардиальными факторами: 1) респираторные артефакты - ХОБЛ (в том числе эмфизема), гипервентиляция; 2) ожирение, наличие выраженного слоя подкожно-жировой клетчатки; 3) выраженный реберный каркас грудной клетки; 4) развитые молочные железы; а также с кардиальными факторами: 1) акустическая тень протеза сердечного клапана; 2) кальциноз клапана; 3) малые размеры объемных образований. Метод обеспечивает практически абсолютное, равномерное акусти-ческое окно хорошего качества. Использование высокочастотных датчиков (5–7 МГц) позволяет на порядок улучшить пространственную разрешающую способность в аксиальном и латеральном направлениях. Это еще один определяющий фактор получения высококачественного изображения, недоступного при проведении стандартной эхоКГ. С помощью данного метода можно исследовать структуры, недоступные при стандартной эхоКГ: верхняя полая вена, ушки предсердий, легочные вены, проксимальные части венечных артерий, синусы Вальсальвы, грудная аорта.

Открыты новые возможности в исследовании правого сердца. Выявлены уникальные возможности чреспищеводной эхоКГ у пациентов в критическом состоянии, при внутриоперационном мониторинге функции желудочка, когда требуется диагностика гиповолемии, систолической дисфункции желудочка, транзиторной ишемии, ИМ. Метод высокоэффективен для дифференциальной диагностики объемных и условно принимаемых за объемные образований сердца: опухолей, тромбов; предвестников системной тромбоэмболии: спонтанного эхоКГ-контрастирования полости, нитей фибина; вегетаций малых размеров, нитей шва протеза клапана, ложных хорд желудочка, миксоматозной дегенерации митрального клапана. Метод чреспищеводной эхоКГ сравнивали с другими методами, в том числе рассматриваемыми в качестве стандартных, включая стандартную двухмерную эхоКГ (Коваленко В.Н. и соавт., 2003).

Протокол исследования определяется конкретной клинической ситуацией, чреспищеводной эхоКГ всегда предшествует чрезгрудное эхоКГ-исследование.

Показания к проведению чреспищеводной эхоКГ

1. Субоптимальная стандартная ТТ-эхоКГ.

2. Выявление инфарктобусловившей венечной артерии.

3. Оценка эффективности реконструктивных операций, протезирования клапанов, трансплантированного сердца, состоятельность аортокоронарных маммарно-коронарных шунтов сразу после выхода из искусственного кровообраще-ния. Оценка стентирования венечной артерии.

4. Внутриоперационный мониторинг общей и локальной функции желудочка; диагностика ишемии, ИМ; дифференциация состояния гиповолемия/систолическая дисфункция желудочка.

5. Точная диагностика значимости стенотических и регургитирующих потоков при пороках сердца.

6. Патологические состояния аорты, включая расслаивающую аневризму, коарктацию.

7. Необходимость проведения дифференциального диагноза объемных и условно принимамых за объемные образований сердца:

7.1. Опухоль.

7.2. Тромб.

7.3. Вегетация (инфекционный эндокардит).

7.4. Абсцесс кольца клапана.

7.5. Аневризматическое расширение венечной артерии.

7.6. Аневризма перегородки предсердий, ее липоматоз.

7.7. Миксоматозная дегенерация парусов митрального клапана.

7.8. Ложная хорда желудочка.

7.9. Сеть Хиари.

7.10. Нити шва протеза клапана.

7.11. Спонтанное эхоКГ-контрастирование полости предсердия (предвестник тромбоэмболии).

7.12. Нити фибрина (предвестник тромбоэмболии).

7.13. Микропузырьки.

8. Оценка инфекционных осложнений, связанных с установленными катетерами и электродами, включая электрод пейсмекера.

9. Диагностика септальных дефектов, вклю-чая малые коммуникации.

10. Наличие рецидивирующих ПЖ-ритмов (подозрение на аритмогенную дисплазию ПЖ сердца).

11. Предполагаемый источник системной тромбоэмболии в предсердиях или ушке предсердия, нижней полой вене.

12. Выявление парадоксальной воздушной эмболии у пациентов при нейрохирургических процедурах, лапараскопии, цервикальной ламинэктомии.

13. ТЭЛА.

14. Контроль эффективности перикардиоцентеза, эндомиокардиальной биопсии.

15. Отбор доноров для трансплантации сердца.

Осложнения процедуры чреспищеводной эхоКГ

Тяжелые

1. Перфорация пищевода.

3. Травма ротовой полости.

4. Кровотечение из варикозно расширенных вен пищевода или вследствие фрагментации внутрипищеводно расположенной опухоли.

5. Фибрилляция желудочков, другие желудочковые ритмы.

6. Ларингоспазм.

7. Бронхоспазм.

8. Тонические, клонические судороги.

9. Ишемия миокарда.

Легкие

1. Транзиторная гипо- и гипертензия.

2. Рвота.

3. Суправентрикулярные нарушения ритма.

4. Стенокардия.

5. Гипоксемия.

Основные плоскости сканирования

Методика чреспищеводной эхоКГ предполагает план исследования, который разделен на три этапа. Базальное, четырехкамерное и трансгастральное сканирование возможно на различных пунктах локализации конца эндоскопа относительно расстояния от передних зубов пациента (рис. 7.24).

Затем переходят от общего плана исследования к частному, с получением стандартных результирующих плоскостей сканирования. Сканированием по базальной короткой оси получают по крайней мере четыре стандартных вида: с 1 по 4 (см. рис. 7.24). В четырехкамерном сечении - три вида: с 5 по 7, что примерно соответствует стандартным ТТ-двухмерным эхоКГ-видам по длинной оси. При помещении конца эндоскопа в фундальную часть желудка (трансгастральное сканирование по короткой оси) получают сечение желудочков на уровне средних отделов сосочковых мышц ЛЖ (см. рис. 7.24, вид 8), где проводится анализ локальной функции сегментов стенок желудочка, мониторинг его общей функции.

Уровень усиления сигнала начально устанавливают до получения артефактов - то есть высоко с целью определения истинных контуров эндокарда.

Наклоняя конец эндоскопа кверху или же слегка извлекая, получают последовательное сканирование структур по базальной короткой оси (см. рис. 7.24, вид 1).

В результате конец эндоскопа помещается сразу сзади левого предсердия.

Рис. 7.24. Диаграмма перехода от первичных плоскостей сканирования



В.Н. Коваленко, С.И. Деяк, Т.В. Гетьман "Эхокардиография в кардиологии"

Глава 2. Стандартные эхокардиографические позиции

Приставив ультразвуковой датчик к грудной клетке, можно получить бесчисленное множество двумерных изображений (сечений) сердца. Из всевозможных сечений выделяют несколько, которые называют «стандартными позициями». Умение получить все необходимые стандартные позиции и проанализировать их составляет основу знания эхокардиографии.

В наименования стандартных позиций входят и положение датчика относительно грудной клетки, и пространственная ориентация плоскости сканирования, и названия визуализирующихся структур. Строго говоря, именно положение структур сердца на экране определяет ту или иную стандартную позицию. Так, например, положение датчика при получении парастернальной короткой оси левого желудочка на уровне митрального клапана может сильно варьировать у разных пациентов; критерием того, что позиция получена правильно, будет обнаружение правого и левого желудочков, межжелудочковой перегородки и митрального клапана в правильном соотношении. Иными словами, стандартные эхокардиографические позиции - это не стандартные положения ультразвукового датчика, а стандартные изображения структур сердца.

В табл. 3 мы приводим перечень основных стандартных эхокардиографических позиций сердца и анатомические ориентиры, необходимые для правильного их получения.

Таблица 3. Стандартные эхокардиографические позиции

Позиция Основные анатомические ориентиры
Парастернальный доступ
Длинная ось ЛЖ* а) Максимальное раскрытие митрального клапана, аортальный клапан
б) Максимальное раскрытие аортального клапана, митральный клапан
Длинная ось приносящего тракта ПЖ* Максимальное раскрытие трехстворчатого клапана, отсутствие структур левых отделов сердца
Короткая ось аортального клапана* Трехстворчатый, аортальный клапаны, круглое сечение корня аорты
Короткая ось ЛЖ на уровне митрального клапана* Митральный клапан, межжелудочковая перегородка
Короткая ось ЛЖ на уровне папиллярных мышц* Папиллярные мышцы, межжелудочковая перегородка
Апикальный доступ
Четырехкамерная позиция* Верхушка ЛЖ, межжелудочковая перегородка, митральный, трехстворчатый клапаны
«Пятикамерная позиция»* Верхушка ЛЖ, межжелудочковая перегородка, митральный, трехстворчатый, аортальный клапаны
Двухкамерная позиция* Верхушка ЛЖ, митральный клапан, отсутствие структур правых отделов сердца
Длинная ось левого желудочка** Верхушка ЛЖ, межжелудочковая перегородка, митральный, аортальный клапаны
Субкостальный доступ
Длинная ось сердца** Межпредсердная, межжелудочковая перегородки, митральный, трехстворчатый клапаны
Короткая ось основания сердца** Клапан легочной артерии, трехстворчатый, аортальный клапаны
Длинная ось брюшной аорты** Продольное сечение брюшной аорты, проходящее через ее диаметр
Длинная ось нижней полой вены* Продольное сечение нижней полой вены, проходящее через ее диаметр
Супрастернальный доступ
Длинная ось дуги аорты** Дуга аорты, правая легочная артерия

ЛЖ - левый желудочек, ПЖ - правый желудочек

* Позиции, регистрация которых обязательна у всех пациентов.

** Дополнительные позиции.

Парастернальный доступ

Парастернальная позиция длинной оси левого желудочка (рис. 2.1 А,B)

Это позиция, из которой начинается эхокардиографическое исследование. Она предназначена в основном для изучения структур левых отделов сердца. Кроме того, под контролем двумерного изображения сердца в позиции парастернальной длинной оси левого желудочка производится бо льшая часть М-модального исследования.

Рисунок 2.1. Парастернальная позиция длинной оси левого желудочка с оптимальной визуализацией митрального клапана (А ) и аортального клапана (В ). LV - левый желудочек, RV - правый желудочек, Ao - корень аорты и восходящий отдел аорты, LA - левое предсердие, IVS - межжелудочковая перегородка, PW - задняя стенка левого желудочка, dAo - нисходящий отдел аорты, CS - коронарный синус, RCC - правая коронарная створка аортального клапана, NCC - некоронарная створка аортального клапана, aML - передняя створка аортального клапана, NCC - некоронарная створка аортального клапана, aML - передняя створка митрального клапана, pML - задняя створка митрального клапана.

Датчик устанавливается слева от грудины в третьем, четвертом или пятом межреберье. Центральный ультразвуковой луч (продолжение длинной оси датчика) направляется перпендикулярно поверхности грудной клетки. Датчик поворачивается таким образом, чтобы его плоскость была параллельна воображаемой линии, соединяющей левое плечо с правой подвздошной областью. Для получения оптимального изображения длинной оси левого желудочка часто требуется отклонение плоскости датчика примерно на 30° (центральный луч направлен в сторону левого плеча). Эта позиция рассекает левый желудочек от верхушки до основания. Аорта должна находиться в правой части изображения, область верхушки левого желудочка - в левой.

Ближе всего к датчику находится передняя стенка правого желудочка, за ней - часть выносящего тракта правого желудочка. Ниже и правее расположены корень аорты и аортальный клапан. Передняя стенка аорты переходит в мембранозную часть межжелудочковой перегородки, задняя стенка аорты - в переднюю створку митрального клапана. Кзади от корня аорты и восходящего отдела аорты находится левое предсердие. Задняя стенка левого предсердия - это в норме самая удаленная от датчика структура сердца в данной позиции. Кзади от левого предсердия часто обнаруживается эхо-негативное пространство овальной формы. Это - нисходящая аорта; овальная ее форма обусловлена тем, что срез проходит под острым углом как к длинной, так и к короткой ее оси. Задняя стенка левого предсердия переходит в атриовентрикулярный бугорок и затем в заднюю стенку левого желудочка. В области атриовентрикулярного бугорка часто видна эхо-негативная структура округлой формы; это - коронарный синус. При расширении коронарного синуса его можно ошибочно принять за нисходящую аорту. Впрочем различить эти структуры нетрудно: коронарный синус движется вместе с митральным кольцом, а нисходящая аорта, будучи структурой внесердечной, вместе с сердцем не движется. Задняя стенка левого желудочка визуализируется от уровня митрального кольца до папиллярных мышц; направив центральный ультразвуковой луч книзу, можно расширить область визуализации задней стенки левого желудочка. Верхушка левого желудочка находится на одно или несколько межреберий ниже датчика, установленного парастернально, и в срез не попадает, так что не следует пытаться судить о локальной сократимости верхушечных сегментов левого желудочка из этой позиции. Кпереди от задней стенки левого желудочка находится полость левого желудочка, в норме самая большая из всех структур в этой эхокардиографической позиции. В полости левого желудочка визуализируются передняя и задняя створки митрального клапана. Межжелудочковая перегородка, ограничивающая полость левого желудочка спереди, видна от мембранозной части до области, прилежащей к верхушке левого желудочка.

Структуры, представляющие в этой позиции наибольший интерес, - межжелудочковая перегородка, аортальный и митральный клапаны - обычно не могут быть идеально видны на одном изображении. Поэтому требуется оптимизация изображений отдельных структур. Длинная ось восходящей аорты обычно находится под углом 30° к длинной оси левого желудочка, поэтому для оптимальной визуализации восходящей аорты, корня аорты и аортального клапана нужно слегка повернуть датчик. На рис. 2.1B представлена позиция парастернальной длинной оси левого желудочка, оптимизированная для наилучшей визуализации аортального клапана. Плоскость датчика повернута таким образом, чтобы диаметр корня аорты и восходящего ее отдела был максимальным. Это позволяет исследовать размеры аорты и максимальное раскрытие створок аортального клапана.

Для оптимальной визуализации митрального клапана плоскость датчика отклоняют вперед-назад до тех пор, пока не будет получена позиция, в которой створки митрального клапана раскрываются максимально (рис. 2.1A). Плоскость сечения левого желудочка должна при этом проходить между папиллярными мышцами, так чтобы ни они, ни хорды не попадали в изображение. Эта позиция соответствует максимальному переднезаднему размеру левого желудочка на уровне его основания.

Обязательная часть эхокардиографического исследования - это М-модальное исследование, которое почти всегда проводится исключительно из позиции парастернальной длинной оси левого желудочка. На рис. 2.2, 2.3, 2.4 приведены изображения стандартных позиций М-модального исследования. Двумерное изображение помогает правильно ориентировать ультразвуковой луч для М-модального исследования.

Рисунок 2.2. М-модальное исследование аортального клапана и левого предсердия. Левая коронарная створка аортального клапана не видна, а правая коронарная и некоронарная створки в систолу образуют «коробочку». Для правильного измерения переднезаднего размера левого предсердия ультразвуковой луч должен проходить перпендикулярно его задней стенке. RV - правый желудочек, Ao - аортальный клапан и корень аорты, LA - левое предсердие, R - правая коронарная створка аортального клапана, N - некоронарная створка аортального клапана.

Рисунок 2.3. М-модальное исследование правого желудочка, полости левого желудочка, митрального клапана. Движение передней створки митрального клапана отражает все фазы диастолического наполнения левого желудочка: максимальное открытие клапана в раннюю диастолу, частичное прикрытие в фазу диастазиса, меньшее по амплитуде позднее открытие в фазу предсердной систолы. Движение задней створки митрального клапана зеркально отображает движение передней створки. LV - левый желудочек, RV - правый желудочек, IVS - межжелудочковая перегородка, PW - задняя стенка левого желудочка, aML - передняя створка митрального клапана, pML - задняя створка митрального клапана.

Рисунок 2.4. М-модальное исследование полости левого желудочка. Для правильного измерения размеров полости и толщины задней стенки левого желудочка и толщины межжелудочковой перегородки необходимо, чтобы ультразвуковой луч проходил параллельно короткой оси левого желудочка. LV - левый желудочек, RV - правый желудочек, IVS - межжелудочковая перегородка, PW - задняя стенка левого желудочка.

Парастернальная позиция длинной оси приносящего тракта правого желудочка (рис. 2.5)

Эта позиция предназначена для исследования правых отделов сердца, главным образом трехстворчатого клапана. Датчик устанавливается слева от грудины в третьем или четвертом межреберье. Он должен быть отодвинут как можно дальше от грудины, насколько позволяют легкие. Центральный ультразвуковой луч направляется резко вправо в загрудинную область, - туда, где находится трехстворчатый клапан.

Рисунок 2.5. Парастернальная позиция длинной оси приносящего тракта правого желудочка. RV - правый желудочек, RA - правое предсердие, TV - трехстворчатый клапан, EV - евстахиев клапан.

Плоскость датчика поворачивается на 15-30° по часовой стрелке от положения парастернальной длинной оси левого желудочка.

Трехстворчатый клапан находится в центре изображения. Вверху и слева от него - проксимальная часть приносящего тракта правого желудочка. Внизу изображения - правое предсердие. Часто визуализируется евстахиев клапан, расположенный в правом предсердии в месте впадения нижней полой вены.

В этой позиции не следует допускать попадания в изображение структур, относящихся к левым отделам сердца. Позиция парастернальной длинной оси приносящего тракта правого желудочка получена правильно, если трехстворчатый клапан находится в центре ее, хорошо видны его передняя и задняя створки и диаметр приносящего тракта правого желудочка максимален.

Парастернальная позиция короткой оси аортального клапана (рис. 2.6)

Для получения этой позиции датчик устанавливается в третьем-четвертом межреберье слева от грудины. Центральный ультразвуковой луч направляется перпендикулярно поверхности грудной клетки или отклоняется немного вправо и вверх. Датчик должен быть повернут на 90° по отношению к плоскости, в которой регистрируется парастернальная длинная ось левого желудочка. Вверху изображения оказывается выносящий тракт правого желудочка, справа и книзу от него - клапан легочной артерии и ствол легочной артерии. В центре изображения - аортальный клапан с тремя створками (левая коронарная - справа, правая коронарная - слева вверху, некоронарная - слева внизу). Положение датчика должно быть оптимизировано для получения четкого изображения створок аортального клапана. Корень аорты должен иметь строго округлую форму. Незначительные изменения положения датчика часто позволяют визуализировать ствол левой коронарной артерии и иногда правую коронарную артерию (рис. 2.7).

Рисунок 2.6 . Парастернальная позиция короткой оси аортального клапана. RVOT - выносящий тракт правого желудочка, LA - левое предсердие, RA - правое предсердие, IAS - межпредсердная перегородка, L - левая коронарная створка аортального клапана, R - правая коронарная створка аортального клапана, N - некоронарная створка аортального клапана, LCA - ствол левой коронарной артерии, TV - трехстворчатый клапан, PV - клапан легочной артерии.

Рисунок 2.7. Парастернальная позиция короткой оси аортального клапана. Плоскость сканирования проходит через проксимальный отдел восходящей аорты и проксимальные отделы обеих коронарных артерий. Ao - проксимальный отдел восходящей аорты, LCA - ствол левой коронарной артерии, RCA - правая коронарная артерия.

Незначительные изменения положения датчика позволяют визуализировать инфундибулярную часть правого желудочка, расположенную над корнем аорты, клапан легочной артерии и проксимальную часть ствола легочной артерии. Дополнительно повернув датчик по часовой стрелке, можно визуализировать весь ствол легочной артерии до ее бифуркации на правую и левую легочные артерии (рис. 2.8). Эта позиция оптимальна для допплеровского исследования кровотока в легочной артерии.

Рисунок 2.8. Парастернальная позиция короткой оси аортального клапана, ориентированная для оптимальной визуализации легочной артерии. Иногда эту позицию называют парастернальной позицией длинной оси легочной артерии. Ao - корень аорты, dAo - нисходящий отдел аорты, RVOT - выносящий тракт правого желудочка, PA - ствол легочной артерии, PV - клапан легочной артерии, LPA - левая легочная артерия, RPA - правая легочная артерия.

Парастернальная позиция короткой оси левого желудочка на уровне митрального клапана (рис. 2.9)

Из множества сечений левого желудочка, которые можно получить по его парастернальной короткой оси, выделяют позиции парастернальной короткой оси левого желудочка на уровне митрального клапана и на уровне папиллярных мышц. Эти позиции предназначены для исследования левого желудочка, правый желудочек может занимать относительно большое место на изображениях только при его дилатации. Иногда выделяются еще одну парастернальную позицию - по короткой оси левого желудочка на уровне верхушки, но на практике она используется редко.

Рисунок 2.9. Парастернальная позиция короткой оси левого желудочка на уровне митрального клапана. LV - левый желудочек, RV - правый желудочек.

Для получения парастернальной короткой оси левого желудочка на уровне митрального клапана датчик устанавливают слева от грудины в третьем, четвертом или пятом межреберье. Центральный ультразвуковой луч направляют перпендикулярно поверхности грудной клетки или слегка отклоняют влево. Датчик следует повернуть на 90° по отношению к плоскости, в которой регистрируют парастернальную длинную ось левого желудочка.

Ближе всего к датчику, т. е. в верхней части изображения оказывается часть правого желудочка. Структуры, относящиеся к трехстворчатому клапану часто видны в левой части изображения. В норме межжелудочковая перегородка своей выпуклостью обращена к правому желудочку. Левый желудочек, занимающий бо льшую часть изображения, расположен правее и ниже и имеет округлую форму. Бывает непросто рассмотреть границу эндокарда левого желудочка в области его передне-медиальной и передне-латеральной стенок. В центре левого желудочка виден митральный клапан. Позиция парастернальной короткой оси левого желудочка на уровне митрального клапана получена правильно, если полость левого желудочка имеет округлую форму и хорошо видны передняя (выше на изображении) и задняя (ниже на изображении) створки митрального клапана.

Парастернальная позиция короткой оси левого желудочка на уровне папиллярных мышц (рис. 2.10)

Для регистрации этой позиции датчик устанавливают в такое же положение, как и для получения позиции парастернальной короткой оси левого желудочка на уровне митрального клапана, но центральный луч отклоняют немного книзу, или сам датчик смещают на одно межреберье ниже.

Рисунок 2.10 . Парастернальная позиция короткой оси левого желудочка на уровне папиллярных мышц. RV - правый желудочек, LV - левый желудочек, AL - передне-латеральная папиллярная мышца, PM - задне-медиальная папиллярная мышца.

Правый желудочек находится еще латеральнее (левее на изображении) и занимает еще меньше места, чем в позиции короткой оси левого желудочка на уровне митрального клапана. Папиллярные мышцы расположены на уровне задне-перегородочной (задне-медиальная папиллярная мышца) и задне-боковой (передне-латеральная папиллярная мышца) стенок левого желудочка. Таким образом, задне-медиальная папиллярная мышца находится на изображении левее передне-латеральной. Позиция парастернальной короткой оси левого желудочка на уровне папиллярных мышц получена правильно, если полость левого желудочка на изображении имеет округлую форму и хорошо видны обе папиллярные мышцы.

Апикальный доступ

Существует четыре стандартные эхокардиографические позиции, регистрируемые с верхушки сердца: четырехкамерная, двухкамерная, пятикамерная и позиция апикальной длинной оси левого желудочка. Для получения этих позиций датчик устанавливают над областью верхушечного толчка, а центральный ультразвуковой луч направляются вверх, в сторону основания сердца.

Апикальная четырехкамерная позиция (рис. 2.11)

Апикальная четырехкамерная позиция сердца - одна из важнейших в двумерной эхокардиографии, так как она позволяет одновременно увидеть предсердия, желудочки, оба атриовентрикулярных клапана, межжелудочковую и межпредсердную перегородки.

Рисунок 2.11 . Апикальная четырехкамерная позиция. LV - левый желудочек, LA - левое предсердие, RV - правый желудочек, RA - правое предсердие.

Чтобы правильно получить апикальную четырехкамерную позицию, нужно точно установить датчик над областью верхушки сердца, и плоскость сечения должна проходить через митральный и трехстворчатый клапаны так, чтобы регистрировалось полное их открытие: в этом случае сечение проходит через длинные оси обоих желудочков. Чтобы лучше рассмотреть отдельные структуры (легочные вены, межпредсердную перегородку в верхней ее части) или, например, направить ультразвуковой луч для допплеровского исследования точно по потоку, нужно слегка изменять положение датчика.

На изображении ближе всего к датчику расположена верхушка левого желудочка, ниже - левый желудочек (справа) и правый (слева). Межжелудочковая перегородка проходит посередине изображения. Атриовентрикулярные клапаны располагаются горизонтально в систолу и открываются в диастолу в сторону верхушки сердца. Передняя створка митрального клапана находится медиально, задняя латерально. Септальная створка трехстворчатого клапана прикрепляется к межжелудочковой перегородке (медиально), передняя створка трехстворчатого клапана (самая большая из трех створок) - к латеральной части кольца трехстворчатого клапана. Задняя створка трехстворчатого клапана в этой позиции не видна. Передняя створка митрального клапана прикрепляется на уровне верхнего участка мембранозной части межжелудочковой перегородки. Септальная створка трехстворчатого клапана прикрепляется ближе к верхушке (на изображении - выше) - на уровне среднего участка мембранозной части межжелудочковой перегородки. Поэтому на изображении трехстворчатый клапан оказывается на 5-10 мм выше митрального. Это может существенно помочь в идентификации желудочков при транспозициях магистральных сосудов (митральный клапан всегда соответствует левому желудочку, трехстворчатый - правому).

Апикальная четырехкамерная позиция - одна из основных при исследовании глобальной и локальной сократимости левого желудочка. К сожалению, эндокард в области верхушки левого желудочка в этой позиции, как и во всех других, часто виден не вполне отчетливо. На изображении левое предсердие ограничено в этой позиции митральным клапаном, межпредсердной перегородкой, верхней и боковой стенками. Легочные вены впадают в левое предсердие в области его верхне-боковой и верхне-медиальной стенки. Правый желудочек виден от верхушки до трехстворчатого клапана и от межжелудочковой перегородки до свободной боковой стенки. Слева в нижней части изображения находится правое предсердие.

Для изучения сократимости задне-базальных отделов левого желудочка плоскость сканирования нужно отклонить книзу: тогда на месте митрального клапана на изображении появятся задне-базальные отделы левого желудочка (рис. 2.12).

Рисунок 2.12 . Апикальная четырехкамерная позиция с отклонением плоскости сканирования книзу. LV - левый желудочек, RV - правый желудочек, RA - правое предсердие, CS - коронарный синус, IVC - нижняя полая вена.

Апикальная пятикамерная позиция (рис. 2.13)

Хотя термин «пятикамерная позиция» широко распространен в эхокардиографической литературе, его следует признать неудачным, так как аорта - не камера сердца. Правильнее называть эту позицию «четырехкамерной с отклонением плоскости сканирования кпереди».

Рисунок 2.13. Апикальная пятикамерная позиция. LV - левый желудочек, LA - левое предсердие, RV - правый желудочек, RA - правое предсердие, LVOT - выносящий тракт левого желудочка.

Для получения этой позиции центральный ультразвуковой луч датчика, установленный для получения четырехкамерной позиции, должен быть отклонен вверх. В этом случае в центре изображения появится выносящий тракт левого желудочка, аортальный клапан и проксимальная часть восходящего отдела аорты, находящаяся на изображении между предсердиями. Расположение структур сердца в этой позиции аналогично тому, что наблюдается в четырехкамерной позиции. Выносящий тракт левого желудочка на изображении сверху и слева ограничен межжелудочковой перегородкой, переходящей в медиальную стенку аорты, снизу и справа - передней створкой митрального клапана, переходящей в латеральную стенку аорты. Апикальная пятикамерная позиция применяется главным образом для двумерного и допплеровского исследования выносящего тракта левого желудочка и для исследования аортального кровотока.

Апикальная двухкамерная позиция (рис. 2.14)

Эта позиция предназначена для исследования только левых отделов сердца: левого желудочка, левого предсердия и митрального клапана. Для получения этой позиции необходимо сначала получить апикальную четырехкамерную позицию, отклонить центральный ультразвуковой луч немного влево, затем начать поворачивать датчик против часовой стрелки до исчезновения правых отделов сердца. На изображении верхушка левого желудочка находится вверху слева, в правой части изображения - передняя стенка левого желудочка, в левой части изображения - задняя стенка левого желудочка. Передняя створка митрального клапана - справа на изображении, задняя - слева. Внизу на изображении - левое предсердие.

Рисунок 2.14. Апикальная двухкамерная позиция. LV - левый желудочек, LA - левое предсердие.

Апикальная двухкамерная позиция получена правильно, если диаметр левого желудочка на уровне митрального клапана максимален, срез проходит через верхушку левого желудочка и в изображение не попадают правые отделы сердца.

Апикальная позиция длинной оси левого желудочка (рис. 2.15)

Пространственная ориентация этой позиции аналогична парастернальной позиции длинной оси левого желудочка. Рассматриваемая позиция практически не дает дополнительной информации, если удалось хорошо рассмотреть левые отделы сердца в парастернальных позициях. Если же ультразвуковое исследование из парастернального доступа затруднено, то альтернативой ему может стать апикальная позиция длинной оси левого желудочка.

Рисунок 2.15. Апикальная позиция длинной оси левого желудочка. LV - левый желудочек, LA - левое предсердие, Ao - проксимальный отдел восходящей аорты.

Направление центрального ультразвукового луча для получения этой позиции почти такое же, как и для получения апикальной двухкамерной позиции. Для перехода из двухкамерной позиции к позиции длинной оси левого желудочка плоскость датчика поворачивают приблизительно на 30° против часовой стрелки до положения, пока не будут одновременно видны аортальный и митральный клапаны. При этом в верхней части изображения - верхушка левого желудочка, ниже и правее - часть правого желудочка; аортальный клапан и проксимальный отдел аорты - в правой нижней части изображения, левое предсердие - внизу слева.

Апикальная позиция длинной оси левого желудочка получена правильно, если визуализируется верхушка левого желудочка, максимальное открытие створок митрального клапана и максимальное открытие створок аортального клапана.

Субкостальный доступ

Исследования из субкостального доступа применяют в качестве альтернативы парастернальным исследованиям у детей и пациентов с эмфиземой легких. Кроме того, нижняя полая вена, печеночные вены, брюшная аорта могут быть изучены только при субкостальном исследовании. Поэтому в Лаборатории эхокардиографии Калифорнийского Университета в Сан-Франциско (UCSF) субкостальное исследование проводят всем обследуемым.

Субкостальная позиция длинной оси сердца (рис. 2.16)

Для регистрации субкостальной позиции длинной оси сердца датчик устанавливают под мечевидным отростком и центральный ультразвуковой луч направляют вверх и влево. Плоскость датчика поворачивают таким образом, чтобы она проходила через длинную ось сердца. Эта позиция похожа на апикальную четырехкамерную позицию сердца: она позволяет рассмотреть все четыре камеры сердца, трехстворчатый и митральный клапаны. Имеются определенные трудности в получении субкостальной позиции длинной оси сердца, связанные с тем, что эта позиция, как никакая другая, требует отклонения датчика без потери контакта его с поверхностью тела.

Рисунок 2.16. Субкостальная позиция длинной оси сердца. LV - левый желудочек, RV - правый желудочек, LA - левое предсердие, RA - правое предсердие, a - асцит.

На изображении правые отделы сердца оказываются ближе к датчику, - правое предсердие слева, правый желудочек справа. Правее и ниже находятся левый желудочек и левое предсердие. Субкостальная позиция длинной оси сердца получена правильно, если регистрируется максимальное открытие створок митрального и трехстворчатого клапанов. Субкостальная позиция длинной оси сердца - единственная из эхокардиографических позиций, в которой межжелудочковая и межпредсердная перегородки расположены почти перпендикулярно ультразвуковому лучу. Поэтому эта позиция оптимальна для диагностики дефектов межжелудочковой и особенно межпредсердной перегородки, которую вообще относительно трудно рассмотреть при трансторакальном исследовании.

Субкостальная позиция короткой оси основания сердца, субкостальная позиция короткой оси левого желудочка на уровне митрального клапана (рис. 2.17, 2.18)

Эти позиции получают, повернув датчик 90° по часовой стрелке из положения субкостальной длинной оси сердца. Исследования из субкостальной позиции короткой оси основания сердца служат альтернативой парастернального исследования структур правых отделов сердца: трикуспидального клапана, выносящего тракта правого желудочка, легочной артерии и ее клапана. Для перехода к субкостальной позиции короткой оси левого желудочка на уровне митрального клапана ультразвуковой луч нужно слегка отклонить книзу.

Рисунок 2.17. Субкостальная позиция короткой оси основания сердца. RV - правый желудочек, PA - легочная артерия, LA - левое предсердие, RA - правое предсердие, Ao - корень аорты.

Рисунок 2.18 . Субкостальная позиция короткой оси левого желудочка на уровне митрального клапана. LV - левый желудочек, RV - правый желудочек, MV - митральный клапан.

Субкостальная позиция длинной оси нижней полой вены, длинной оси брюшной аорты (рис. 2.19, 2.20)

Для получения этих позиций датчик устанавливают под мечевидным отростком, плоскость датчика должна быть направлена параллельно сагитальной оси тела. Для оптимальной визуализации нижней полой вены и печеночных вен датчик обычно приходится отклонять или смещать несколько вправо, для получения длинной оси брюшной аорты - вниз и влево.

Рисунок 2.19. Субкостальная позиция длинной оси нижней полой вены. IVC - нижняя полая вена, RA - правое предсердие, HV - медиальная печеночная вена.

Рисунок 2.20. Субкостальная позиция длинной оси брюшной аорты. В просвете аорты видны плотные, яркие образования - атеросклеротические бляшки. AA - брюшная аорта.

Супрастернальный доступ

Супрастернальная позиция длинной оси дуги аорты, супрастернальная позиция короткой оси дуги аорты (рис. 2.21, 2.22)

Супрастернальный доступ позволяет исследовать крупные сосуды: грудную аорту и ее ветви, легочную артерию, верхнюю полую вену. У взрослых пациентов эта позиция используется главным образом для допплеровских исследований. Датчик устанавливается в яремную ямку, голова пациента должна быть повернута в сторону примерно на 45°. Центральный ультразвуковой луч направляют вниз. Плоскость датчика поворачивают таким образом, чтобы регистрировалась максимальная ширина дуги аорты на всем ее протяжении. На изображении дуга аорты находится вверху, нисходящий отдел аорты занимает правый край изображения, восходящий - левый. У многих пациентов нисходящий и восходящий отделы аорты не помещаются на изображении одновременно, в таких случаях следует переместить датчик вправо для визуализации восходящей аорты или влево для визуализации нисходящей аорты. Справа вверху на изображении можно видеть левую сонную артерию, ниже - левую подключичную артерию. Под дугой аорты, в середине изображения находится правая легочная артерия. Повернув датчик на 90°, можно получить супрастернальную позицию короткой оси дуги аорты. В этой позиции в изображение попадают дуга аорты по короткой ее оси и правая легочная артерия по ее длинной оси.

Из книги Су Джок семянотерапия автора Пак Чжэ Ву

СТАНДАРТНЫЕ СИСТЕМЫ СООТВЕТСТВИЯ КИСТЕЙ И СТОП Из большого количества внутренних органов и частей тела кисть выделяется как наиболее схожая с телом по форме и структурным особенностям, поэтому она чаще всего используется для лечения. Так каким же образом тело

Из книги Самовнушение, движение, сон, здоровье автора Николай Иванович Спиридонов

СТАНДАРТНЫЕ УПРАЖНЕНИЯ АТ Можно привести бесчисленное количество примеров, показывающих, какими колоссальными резервами обладает человеческий организм. Правда, выявляются они только после специальной тренировки. Опытные шлифовальщики например, различают просветы в

Из книги Латинский язык для медиков: конспект лекций автора А. И. Штунь

Лекция № 20. Стандартные латинские выражения, встречающиеся в научной, политической и художественной литературе Ab origine – С возникновения, с началаAd absurdum – (Приведение) к нелепому выводуAd hoc – Для данного случаяAd hominem – Применительно к человекуAd infinitum – До бесконечностиAd

Из книги Рэйки. Рецепты исцеления автора Мария Борисовна Кановская

Позиции рук в Рэйки В системе Рэйки существует 12 основных позиций рук и 4 дополнительные. У каждой из них есть свое назначение с точки зрения исцеления от различных заболеваний.Основные позиции рук располагаются в области головы, спины и передней части

Из книги Жизнь без подгузника! автора Ингрид Бауэр

Основные позиции для спины Позиция девятая. Руки у основания шеиСнимает стрессовое состояние и способствует расслаблению.Помогает при проблемах в позвоночнике и шее.Позиция десятая. Руки на уровне лопатокОказывает то же действие, что и девятая позиция, для передней

Из книги Оздоровительно-боевая система «Белый Медведь» автора Владислав Эдуардович Мешалкин

Дополнительные позиции Позиция перваяОдна рука находится на лбу, другая – на затылке.Эту позицию еще называют «космическим штепселем», потому что она помогает «перезарядить» свою энергию или энергию человека, которого вы исцеляете.Позиция втораяОдна рука находится на

Из книги Аптека здоровья по Болотову автора Глеб Погожев

10. Позиции для высаживания Для того чтобы комфортно высадить маленького ребенка, существует множество различных поз. Вы можете выбрать то, что подходит именно вам или изобрести что-то новое. Выбор зависит от множества факторов: возраста ребенка, вашего роста и

Из книги Золотые рецепты здоровья и долголетия автора Глеб Погожев

ГЛАВА 3 ОСНОВНЫЕ ДИНАМИЧЕСКИЕ ПОЗИЦИИ Именно динамические позиции, а никакие не стойки и стансы, как у китайцев или японцев. Наш принцип – постоянное движение в Волне или Свиле, поэтому статика невозможна. Динамические позиции – это стартовые подвижные формы тела,

Из книги Зеленая энциклопедия здоровья. Лучшие рецепты нетрадиционной медицины автора Александр Кородецкий

Боевые позиции А сейчас – внимание! Рассмотрим ряд очень важных правил, связанных с восприятием боевой сферы и являющихся фундаментальными принципами ОБС «Белый Медведь».Мы уже знаем, что такое боевая сфера. Теперь разделим ее на сектора, которые будем использовать в

Из книги Тянь-ши: Золотые рецепты исцеления автора Алексей Владимирович Иванов

ЧАСТЬ III. СТАНДАРТНЫЕ СХЕМЫ ЛЕЧЕНИЯ Аллергия Одной из причин, вызывающих аллергию, является недостаток хлоридов в организме. Для их восполнения необходимо употреблять продукты, которые восполнят недостаток соли. К таким продуктам

Из книги Гармоничные роды – здоровые дети автора Светлана Васильевна Баранова

Часть III Стандартные схемы лечения Аллергия Одной из причин, вызывающих аллергию, является недостаток хлоридов в организме. Для их восполнения необходимо употреблять продукты, которые восполнят недостаток соли. К таким продуктам

Из книги Имбирь. Кладезь здоровья и долголетия автора Николай Илларионович Даников

Глава 7 СТАНДАРТНЫЕ СХЕМЫ ЛЕЧЕНИЯ Аллергия Нормализация солевого балансаОдной из причин, вызывающих аллергию, является недостаток хлоридов в организме. Для их восполнения необходимо употреблять продукты, которые восполнят недостаток соли. К таким продуктам

Из книги автора

Глава 3 Стандартные курсы приема БАДов «Тянь-ши» Эффект использования биологических пищевых добавок зависит от многих факторов: от питания, физического и эмоционального здоровья и др. Не стоит забывать, что человек – это часть природы, с которой он находится в

Из книги автора

Позиции ДЛЯ родов Как уже было замечено, при выборе положения для родов полезно использовать закон тяготения. Любая вертикальная или полувертикальная позиция – стоя, прислонившись к чему-либо, ходя, стоя на четвереньках или сидя на корточках – помогает вашему ребёнку

Из книги автора

Стандартные дозировки и противопоказания Если нет других указаний, используют до 1/4 ч. л. порошка на порцию пищи или на стакан кипятка.В нижеприведенных рецептах используется имбирная вода. Она готовится следующим образом.1/4 ч. л. порошка имбиря залить 200 мл кипящей воды,