Интерфероны представляют собой белковые молекулы с молекулярной массой от 15000 до 21000 дальтон, продуцируемые и секретируемые клетками в ответ на вирусную инфекцию или другие возбудители.

Интерфероны (ИФН) - группа аутогенных гликопротеинов, биомеханизм действия которых связан с одновременным противовирусным эффектом - активацией клеточных генов, в результате чего синтезируются белки, ингибирующие синтез вирусной ДНК (РНК) и обладающие иммуномодулирующим эффектом - способностью усиливать экспрессию антигенов на клеточных мембранах и увеличивать активность цитотоксических Т-клеток и естественных киллеров .

ИФН подразделяются на два типа. К первому типу, действующему как ингибиторы репликации вируса и оказывающему преимущественно противовирусный эффект, относятся 22 различных подтипа ИФН-α и один подтип ИФН-β. Ко второму типу, проявляющему иммуномодуляторную активность, относятся ИФН-γ.

Существует три иммунологически различных класса ИФН: ИФН-α, ИФН-β, ИФН-γ.

К ИФН естественного происхождения относятся лимфобластоидный и лейкоцитарный ИФН (ИФН-α), синтезируемые соответственно стимулированными моноцитами и В-лимфоцитами человека, которые затем экстрагируются и очищаются; фибробластный ИФН (ИФН-β), получаемый из культуры фибробластов человека, и Т-лимфоцитарный ИФН (ИФН-γ).

К искусственно синтезируемым ИФН относится рекомбинантный ИФН-α, который представляет собой высокоочищенный единственный подтип ИФН-α, получаемый по рекомбинантной молекулярной технологии .

Известны способы получения лейкоцитарного интерферона человека из лейкоцитов донорской крови человека, индуцированных вирусами и другими индукторами.

Основным недостатком этих способов получения интерферонов являются вероятность контаминации конечного продукта вирусами человека, такими как вирус гепатитов В и С, вируса иммунодефицита и др.

В настоящее время более перспективным признан способ получения интерферона микробиологическим синтезом, который обеспечивает возможность получения целевого продукта со значительно более высоким выходом из сравнительно недорогого исходного сырья. Используемые при этом подходы позволяют создать оптимальные для бактериальной экспрессии варианты структурного гена, а также регуляторных элементов, контролирующих его экспрессию.

В качестве исходных микроорганизмов используют различные конструкции штаммов Pichia pastoris, Pseudomonas putida и Escherichia coli.

Недостатком использования P. pastoris в качестве продуцента интерферона, является крайне сложные условия ферментации этого типа дрожжей, необходимость строго поддерживать концентрацию индуктора, в частности метанола, в процессе биосинтеза.

Недостатком использования штаммов Ps. putida является сложность процесса ферментации при низком уровне экспрессии (10 мг интерферона на 1 л культуральной среды). Более продуктивным является использование штаммов Escherichia coli.

Известно большое количество плазмид и созданных на их основе штаммов Е. coli, экспрессирующих интерферон: штаммы Е. coli ATCC 31633 и 31644 с плазмидами Z-pBR322 (Psti) HclF-11-206 или Z-pBR 322(Pstl)/HclN SN 35-AHL6 (SU 1764515), штамм Е. coli pINF- AP2 (SU 1312961), штамм Е. coli pINF- F-Pa (AU 1312962), штамм E.Coli SG 20050 с плазмидой p280/21FN (Кравченко В.В. и др. Биоорганическая химия, 1987, т.13, №9, с.1186-1193), штамм E.Coli SG 20050 с плазмидой pINF14 (SU 1703691), штамм E.coli SG 20050 с плазмидой pINF16 (RU 2054041) и др. Недостатком технологий, основанных на использовании этих штаммов, является их нестабильность, а также недостаточный уровень экспрессии интерферона.

Наряду с особенностями используемых штаммов эффективность процесса во многом зависит от используемой технологии выделения и очистки интерферона.

Известен способ получения интерферона, включающий в себя культивирование клеток Ps. putida, разрушение биомассы, обработку полиэтиленимином, фракционирование сернокислым аммонием, гидрофобную хроматографию на фенилсилохроме С-80, рН-фракционирование лизата, его концентрирование и диафильтрацию, ионообменную хроматографию на целлюлозе DE-52, элюирование в градиенте рН, ионообменную хроматографию полученного элюента на целлюлозе СМ-52, концентрирование пропусканием через кассету фильтров и гель-фильтрацию на Сефадексе G-100 (SU 1640996). Недостатком этого способа кроме сложной многостадийной ферментации является многостадийность при получении конечного продукта.

Известен также способ получения интерферона, включающий в себя культивирование штамма E.coli SG 20050/pIF16, в LB-бульоне в колбах в термостатированном шейкере, центрифугирование биомассы, ее промывку буферным раствором и обработку ультразвуком для разрушения клеток. Полученный лизат центрифугируют, промывают 3М раствором мочевины в буфере, растворяют в растворе гуанидин хлорида в буфере, обрабатывают ультразвуком, центрифугируют, проводят окислительный сульфитолиз, диализ против 8 М мочевины, ренатурацию и окончательную двухстадийную хроматографию на СМ-52 целлюлозе и сефадексе G-50 (RU 2054041).

Недостатками этого способа является его относительно невысокая производительность основных этапов процесса выделения и очистки. В особенности это относится к ультразвуковой обработке продукта, диализу и окислительному сульфитолизу, что приводит к нестабильности выхода интерферона, а также к невозможности использования этого метода для промышленного производства интерферона.

В качестве наиболее близкого аналога (прототипа) может быть указан способ получения лейкоцитарного интерферона человека, заключающийся в культивировании рекомбинантного штамма E.coli, замораживании полученной биомассы при температуре не выше -70°С, размораживании, разрушении клеток микроорганизма лизоцимом, удалении ДНК и РНК введением в лизат ДНК-азы и очисткой выделенной нерастворимой формы интерферона отмывкой буферным раствором с детергентами, растворении осадка интерферона в растворе гуанидин гидрохлорида, ренатурации и одностадийной очистке ионообменной хроматографией. В качестве продуцента используют штамм E.coli SS5, полученный с помощью рекомбинантной плазмиды pSS5, содержащей три промотора: Plac, Pt7 и Ptrp, и ген альфа -интерферона с введенными нуклеотидными заменами.

Экспрессия интерферона штаммом E.coli SS5, содержащим эту плазмиду, контролируется тремя промоторами: Plac, Pt7 и Ptrp. Уровень экспрессии интерферона составляет около 800 мг на 1 л клеточной суспензии.

Недостатком способа является низкая технологичность использования ферментативного разрушения клеток, ДНК и РНК микроорганизма и одностадийная хроматографическая очистка интерферона. Это обуславливает нестабильность процесса выделения интерферона, приводит к снижению его качества и ограничивает возможность использования приведенной схемы для промышленного производства интерферона.

Недостатками данной плазмиды и штамма на ее основе являются использование в плазмиде сильного нерегулируемого промотора фага Т7 в штамме Е. coli BL21 (DE3), в котором ген Т7 РНК полимеразы находится под промотором lac оперона и который всегда "течет". Следовательно, в клетке непрерывно происходит синтез интерферона, что приводит к диссоциации плазмиды и снижению жизнеспособности клеток штамма, и в результате - снижение выхода интерферона.

Для получения больших количеств ИФН используют шестидневные однослойные культуры клеток куриного эмбриона или культивируемые лейкоциты крови человека, зараженные определенным видом вируса. Иными словами, для получения ИФН создают определенную систему вирус-клетка.

Из клетки человека изолирован ген, ответственный за биосинтез ИФН. Экзогенный человеческий ИФН получают, используя технологию рекомбинантных ДНК. Процедура выделения кДНК ИФН-ов состоит в следующем:

1) Из лейкоцитов человека выделяют мРНК, фракционируют ее по размерам, проводят обратную транскрипцию, встраивают в сайт модифицированной плазмиды.

2) Полученным продуктом трансформируют Е. соli; образовавшиеся клоны подразделяют на группы, которые идентифицируют.

3) Каждую группу клонов гибридизируют с ИФН - мРНК.

4) Из образовавшихся гибридов, содержащих кДНК и хРНК, выделяют мРНК, проводят ее трансляцию в системе синтеза белка .

5) Определяют интерферонную противовирусную активность каждой смеси, полученной в результате трансляции. Группы, проявившие интерферонную активность, содержат клон с кДНК, гибридизировавшийся с ИФН - мРНК; повторно идентифицируют клон, содержащий полноразмерную ИФН - кДНК человека.

2. Механизмы действия интерферонов

ИФН проявляют некоторые виды активности как лимфокины и им-муномодуляторы. ИФН I типа, действующие преимущественно как ингибиторы репликации вирусов в клетке, реализуют свой эффект, стимулируя выработку рибосомами клеток хозяина клеточных ферментов, которые тормозят продукцию вирусов, нарушая трансляцию вирусной мРНК и синтез вирусных белков.

ИФН вырабатывают большинство видов животных, но проявление их активности видоспецифично, т.е. они действуют только у того вида животных, в которых вырабатываются.

ИФН вызывают индукцию трех ферментов:

протеинкиназы, нарушающей начальный этап построения пептидной цепи;

олигоизоаденилат синтетазы, активирующей РНК-азу, которая разрушает вирусную РНК;

фосфодиэстеразы, разрушающей конечные нуклеотиды тРНК, что приводит к нарушению элонгации пептида.

С учетом антивирусного и иммуномоделирующего эффектов ИФН в НПО «Биомед» предложены и успешно апробированы, суппозитории с ИФНаn1 и пробиотиками при терапии дисбактериозов вирусной и бактериальной этиологии, кандидозов; в гинекологической практике для лечения эндометритов, кольпитов, вагинитов и гинекологического герпеса.

3. Терапевтическое применение ИНФ человека

Различают два поколения препаратов интерферона. Для первого поколения характерно натуральное происхождение, при котором его получают из крови доноров. Из него получают интерферон лейкоцитарный человеческий сухой, который применяют для ингаляций и закапывания в носовые проходы. Также производят интерферон в свечах, очищенный концентрированный интерферон в сухом виде и Лейкинферон.

Этот метод получения препаратов на основе интерферона является достаточно дорогим и малодоступным, поэтому в конце 20 века при помощи генной инженерии были созданы препараты интерферона второго поколения.

Таким образом, удалось разработать препараты Виферон, Интераль и другие, содержащие в себе рекомбинантный человеческий интерферон альфа-

По причине своих уникальных свойств препараты интерферона применяют при лечении и профилактики всех респираторных заболеваний, большинства онкозаболеваний, для лечения многих вирусных заболеваний и гриппа. Препараты интерферона широко применяются в лечении гепатита В и С: интерферон ограничивает развитие вируса, препятствует возникновению цирроза и исключает смертельный исход.

У некоторых препаратов интерферона имеются побочные эффекты, например, кожные высыпания, аллергии и заболевания кроветворной системы.

При длительном приеме интерферона в организме вырабатываются антитела к интерферону, что делает его неспособным к борьбе с вирусами. Причина этих явлений кроется в наличии альбумина в препаратах на основе интерферона.

Альбумин получают из крови, поэтому существует риск (хоть и минимальный) заражения гепатитом и другими болезнями, передающимися через кровь.

Название препарата

Подтип ИНФ

Способ получения

Фармакологическое действие

Показания к применению

Интерферон

Биосинтез в культуре лейкоцитов донорской крови под воздействием вирусов

Антивирусное, иммуномодулирующее, антипролиферативное

Вирусные заболевания, лейкоз, злокачественная меланома, рак почек, карциноидный синдром

Интерлок

Биосинтез в культуре лейкоцитов донорской крови под воздействием парамиковирусов

Подавляет жизнедеятельность ряда вирусов

Вирусные заболевания глаз, гепатиты

Рекомбинантный

Антивирусное, иммуномодулирующее, ингибирует пролиферацию большого спектра опухолевых клеток

Эпителиальная форма острой и рецидивирующей вирусной инфекции глаз; онкологические заболевания

Интерферон альфа-2а

Рекомбинантный. Белок, содержащий 165 аминокислот

Противовирусная, противоопухолевая активность

Лейкемический ретикулоэндотелиоз, саркома капоши, рак почки, мочевого пузыря, меланома, опоясывающий лишай

Реаферон

Рекомбинанатный ИНФ, продуцируемый бактериальным штаммом псевдомонады, в генетический аппарат которой встроен ген человеческого лейкоцитарного ИНФ α2. Идентичен человеческому лейкоцитарному ИНФ α2.

Вирусные, опухолевые заболевания

Интерферон альфа – n1

Высокоочищенный человеческий ИНФ

Противовирусная

Хронический активный инфекционный гепатит В

Инреферон бета

Суперпродуция фибробластов человека стимулятором в присутствии ингибиторов обменных процессов

Противовирусная, иммуномодулирующая, противоопухолевая активность

Хронические вирусные инфекции в офтальмологии, гинекологии и урологии, дерматологии, гепатологии, онкологии

Интерферон гамма

Рекомбинантный

Противовирусная, иммуномодулирующая, противоопухолевая активность

Хронические гранулематозные заболевания

1. www.antibiotic.ru/ab/brviri.shtml

2. www.interferon.su/php/content.php?id=71

3. www.pharmvestnik.ru

4. Временная фармакопейная статья 42У-23/60-439-97. Интерферон человеческий рекомбинантный альфа-два.

5. Гавриков А.В. Оптимизация биотехнологического производства субстанций рекомбинантных интерферонов человека.- М., 2003,

6. Глик Б., Пастернак Дж. Молекулярная биотехнология / Б.Глик, Дж. Пастернак. – М., Мир, 2002.

7. Государственная Фармакопея СССР. ХI изд., вып.1.- С. 175.

8. Государственный реестр лекарственных средств / Под ред. А.В. Катлинского и др. – М., 2002.

9. Народицкий Б.С. Молекулярная биотехнология интерферонов. // сборник научно-практической конференции«Интерферону – 50 лет». – М., 2007 г., стр. 17-23

10. Основы фармацевтической биотехнологии: Учебное пособие / Т.П. Прищеп, В.С. Чучалин, К.Л. Зайков, Л.К. Михалева. – Ростов-на-Дону.: Феникс; Томск: Издательство НТЛ, 2006.

11. Фролов А.Ф., Вовк А.Д., Дядюн С.Т. и др. Эффективность рекомбинантного альфа-два-интерферона при вирусном гепатите В//Врачебное дело.- Киев, 1990.- № 9.- С. 105–108.

Интерферон относится к важным защитным белкам иммунной системы. Открыт при изучении интерференции вирусов, т. е. явления, когда животные или культуры клеток, инфицированные одним вирусом, становились нечувствительными к заражению другим вирусом. Оказалось, что интерференция обусловлена образующимся при этом белком, обладающим защитным противовирусным свойством. Этот белок назвали интерфероном.

Интерферон представляет собой семейство белков-гликопротеидов, которые синтезируются клетками иммунной системы и соединительной ткани. В зависимости от того, какими клетками синтезируется интерферон, выделяют три типа: α, β и γ-интерфероны.

Альфа-интерферон вырабатывается лейкоцитами и он получил название лейкоцитарного; бета-интерферон называют фибробластным, поскольку он синтезируется фибробластами - клетками соединительной ткани, а гамма-интерферон - иммунным, так как он вырабатывается активированными Т-лимфоцитами, макрофагами, естественными киллерами, т. е. иммунными клетками.

Интерферон синтезируется в организме постоянно, и его концентрация в крови де­ржится на уровне примерно 2 МЕ/мл (1 меж­дународная единица - ME - это количество интерферона, защищающее культуру клеток от 1 ЦПД 50 вируса). Выработка интерферона резко возрастает при инфицировании вирусами, а также при воздействии индукторов интерферона, например РНК, ДНК, сложных полимеров. Такие индукторы интерферона получили название интерфероногенов.

Помимо противовирусного действия интерферон обладает противоопухолевой защитой, так как задерживает пролиферацию (размножение) опухолевых клеток, а также иммуномодулирующей активностью, стимулируя фагоцитоз, естественные киллеры, регулируя антителообразование В-клетками, активируя экспрессию главного комплекса гистосовместимости.

Механизм действия интерферона сложен. Интерферон непосредственно на вирус вне клетки не действует, а связывается со специальными рецепторами клеток и оказывает влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков.

Применение интерферона . Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или поступать в организм извне. Поэтому его используют с профилактической целью при многих вирусных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепатиты (В, С, D), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и заболеваний, связанных с иммунодефицитами.



Интерфероны обладают видоспецифичностью, т. е. интерферон человека менее эффективен для животных и наоборот. Однако эта видоспецифичность относительна.

Получение интерферона . Получают интерферон двумя способами: а) путем инфи­цирования лейкоцитов или лимфоцитов крови человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конс­труируют из него препараты интерферона; б) генно-инженерным способом - путем выращивания в производственных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон. Обычно используют рекомбинантные штаммы псевдомонад, кишечной палочки со встроенными в их ДНК генами интерферона. Интерферон, получен­ный генно-инженерным способом, носит название рекомбинантного. В нашей стране рекомбинантный интерферон получил официальное название «Реаферон». Производство этого препарата во многом эффективнее и дешевле, чем лейкоцитарного.

Рекомбинантный интерферон нашел широкое применение в медицине как профилактическое и лечебное средство при вирусных инфекциях, новообразованиях и при иммунодефицитах.

Антигены. Определение. Понятие о полноценных и неполноценных антигенах. Требования, предъявляемые к антигенам. Понятия об антигенных свойствах микроорганизмов. Антигенная структура бактерий.

Антигены (от лат. anti - против, genos - род) – генетически чужеродные вещества, которые при введении во внутреннюю среду организма способны вызывать иммунный ответ в виде образования антител или иммунных Т-лимфоцитов и взаимодействовать с ними. Основные свойства антигена - иммуногенность и специфичность. Антигенами являются структурные и химические элементы клеток и продукты их метаболизма.

Антигенами называют чужеродные для организма вещества коллоидной структуры, которые при попадании в его внутреннюю среду способны вызывать ответную специфическую иммунологическую реакцию, проявляющуюся, в частности, в образовании специфических антител, появлении сенсибилизированных лимфоцитов или в возникновении состояния толерантности к этому веществу.



Вещества, являющиеся антигенами, должны быть чужеродны для организма, макромолекулярны, находиться в коллоидном состоянии, поступать в организм парентерально, т.е. минуя желудочно-кишечный тракт, в котором обычно происходит расщепление вещества и потеря его чужеродности. Под чужеродностью антигенов следует понимать определенную степень химического различия между антигеном и макромолекулами организма, во внутреннюю среду которого, но попадает.

Антигенные свойства связаны с величиной молекулярной массы макромолекулы. Чем выше молекулярная масса вещества, тем выше его антигенность. Вместе с тем неверно считать, что высокая молекулярная масса является обязательным свойством антигена. Так, глюкогон, вазопрессин – ангиотензин также обладают антигенными свойствами.

Принято различать полноценные антигены, неполноценные антигены (гаптены) и полугаптены.

Полноценными антигенами называют такие, которые вызывают образование антител или сенсибилизацию лимфоцитов и способны реагировать с ними как в организме, так и в лабораторных реакциях. Свойствами полноценных антигенов обладают белки, полисахариды, высокомолекулярные нуклеиновые кислоты и комплексные соединения этих веществ.

Неполноценные антигены, или гаптены, сами по себе не способны вызывать образование антител или сенсибилизацию лимфоцитов. Это свойство появляется лишь при добавлении к ним полноценных антигенов («проводников»), а среди образующихся антител или сенсибилизированных лимфоцитов часть специфична к «проводнику», а часть – к гаптену.

Полугаптенами называют сравнительно простые вещества, которые при поступлении во внутреннюю среду организма могут химически соединяться с белками этого организма и придавать им свойства антигенов. К этим веществам могут принадлежать и некоторые лекарственные препараты (йод, бром, антипирин и др.).

Молекула антигена состоит из двух неравных частей. Активная (малая часть) с носит название антигенной детерминанты (эпитоп) и определяет антигенную специфичность. Антигенные детерминанты расположены в тех местах молекулы антигена, которые находятся в наибольшей связи с микроокружением. В белковой молекуле, например, они могут располагаться не только на концах полипептидной цепи, но и в других ее частях. Антигенные детерминанты содержат в своем составе по крайней мере три аминокислоты с жесткой структурой (тирозин, триптофан, фенилаланин). Специфичность антигена связана также с порядком чередования аминокислот полипептидной цепи и комбинацией их положений по отношению друг к другу. Количество антигенных детерминант у молекулы антигена определяет его валентность. Она тем выше, чем больше относительная молекулярная масса молекулы антигена.

Остальная (неактивная) часть молекулы антигена, как полагают, играет роль носителя детерминанты и способствует проникновению антигена во внутреннюю среду организма, его пиноцитозу или фагоцитозу, клеточной реакции на проникновение антигена, образование медиаторов межклеточного взаимодействия в иммунном ответе (Т-лимфоциты имеют рецепторы к носителю, В- к антигенной детерминанте).

Соответственно анатомическим структурам бактериальной клетки различают Н-антигены (жгутиковые, если бактерия их имеет), К-антигены (располагаются на поверхности клеточной сткнки), О-антигены (связан с клеточной стенкой бактерий), антигены экскретируемые бактериями в окружающую их среду (белки-экзотоксины, полисахариды капсул).

Среди многочисленных антигенов микробной клетки различают такие, которые присущи только данному типу микробов (типовые антигены), данному виду (видовые антигены), а также общие для группы (семейства) микроорганизмов (групповые антигены).

Таким образом, бактериальная клетка (как и микроорганизмы других царств микробов – вирусы, простейшие, грибки) представляют собой сложный комплекс многочисленных антигенов. При ее попадании во внутреннюю среду макроорганизма на многие из этих антигенов будут образовываться свои специфические антитела. Одни антигены индуцируют образование едва заметного количества антител (титр), другие – быстрое и значительное антителообразование. Соответственно этому различают «слабые» и «сильные» антигены.

Не все антигены бактериальной клетки в равной степени участвуют в индукции невосприимчивости (иммунитета) к повторному попаданию в макроорганизм патогенных микробов того же вида. Способность антигена индуцировать иммунитет называют иммуногенностью, а такой антиген – иммуногеном. Установлено также, что определенные антигены некоторых микроорганизмов могут вызывать развитие различных типов гиперчувствительности (аллергии). Такие антигены называют аллергенами.

По структуре вирусной чстицы различают несколько групп антигенов: ядерные, капсидные и суперкапсидные. Антигенный состав вириона зависит от строения самой вирусной частицы. Антигенная специфичность простоорганизованных вирусов связана с рибо- и дезоксинуклеопротеинами. У сложноорганизованных вирусов часть антигена связана с нуклеокапсидом, а другая локализуется во внешней оболочке – суперкапсиде.

Иммуногенность - способность индуцировать иммунный ответ.

Специфичность - способность антигена вступать в реакции взаимодействия со специфичными к нему антителами или активированными (примированными) лимфоцитами, что приводит к нейтрализации этого антигена.

Иммуногенность определяется:

Чужеродностью , т.е. вещество должно распознаваться иммунной системой как «не свое». При этом чем меньше выражено генетическое родство между организмом и вводимым веществом, тем лучшим иммуногеном оно является;

Молекулярной массой , которая должна быть не менее 5-10 кД. Чем больше молекулярная масса антигена, тем сильнее будет иммунный ответ;

Химической природой . Антигены могут быть белками, полисахаридами, полипептидами, фосфолипидами, нуклеиновыми кислотами и др.

В зависимости от химической природы и молекулярной массы антигены могут быть полными и неполными

(гаптены).

Полные антигены (иммуногены) индуцируют специфический иммунный ответ и вступают в реакции взаимодействия с антителами и активированными Т-лимфоцитами. Это высокомолекулярные вещества - белки, полисахариды, гликопротеины, липополисахариды, липопротеины, нуклеопротеины и корпускулярные формы (микроорганизмы, чужеродные клетки и др.). Антигены могут быть экзогеными или эндогенными. Эндогенные АГ - собственные клетки организма с измененным геномом и образуемые ими продукты (аутоантигены).

Гаптены - это простые химические соединения малой молекулярной массы: дисахара, липиды, пептиды, нуклеиновые кислоты и др. Они не обладают иммуногенностью, но имеют высокий уровень специфичности при взаимодействии с продуктами иммунного ответа (антителами и Т-лимфоцитами). Если гаптен соединить с белком, он приобретает свойство иммуногенности (т. е. становится полным). Специфичность этого комплекса определяется гаптеном

Полугаптены

Проантигены

Полугаптены образуются при соединении неорганических веществ (йод, бром, азот и др.) с белком. Такие комплексы могут вызывать образование антител, специфичных к неорганическим соединениям.

Проантигены являются аллергенами-гаптенами или неантигенными веществами (сульфаниламиды, антибиотики, фенолфталеин и др.). При соединении с белками макроорганизма они способны вызывать состояние сенсибилизации и развитие аллергических реакций.

Полугаптены образуются при соединении неорганических веществ (йод, бром, азот и др.) с белком. Такие комплексы могут вызывать образование антител, специфичных к неорганическим соединениям.

Проантигены являются аллергенами-гаптенами или неантигенными веществами (сульфаниламиды, антибиотики, фенолфталеин и др.). При соединении с белками макроорганизма они способны вызывать состояние сенсибилизации и развитие аллергических реакций.

Плесневые грибы - продуценты антибиотиков. Особенности строения клетки и цикла развития при ферментации. Антибиотики, образуемые плесневыми грибами.

Биотехнология (Быков 2009) с.28-40.

Пле́сневые грибы́ , или пле́сень - различные грибы (в основном, зиго- и аскомицеты) образующие ветвящиеся мицелии без крупных, легко заметных невооруженным глазом, плодовых тел.

Семейства и виды плесневых грибов

  • Penicillium spp.
  • Aspergillus
  • Moniliaceae
  • Dematiaceae
  • Fusarium
  • Acremonium
  • Scytalidium dimidiatum (Nattrassia magniferae )
  • Onychocola canadensis

Распространение в природе

Плесневые грибы распространены повсеместно. В основном, обширные колонии вырастают в тёплых влажных местах, в питательных средах.

Штамм (от нем. Stammen , буквально - происходить) - чистая культура вирусов, бактерий, других микроорганизмов или культура клеток, изолированная в определённое время и в определенном месте. Поскольку многие микроорганизмы размножаются митозом (делением), без участия полового процесса, по существу, виды у таких микроорганизмов состоят из клональных линий, генетически и морфологически идентичных исходной клетке. Штамм не является таксономической категорией, наинизшим таксоном у всех организмов является вид, один и тот же штамм не может быть выделен второй раз из того же источника в другое время.

Отнесение микроорганизма к определённому виду происходит на основе достаточно широких признаков, таких как тип нуклеиновой кислоты и строение капсида у вирусов; способности расти на определённых углеводородах и тип выделяемых продуктов обмена веществ, а также консервативных последовательностях генома у бактерий. Внутри вида существуют вариации относительно, размера и формы бляшек (негативные «колонии» вируса) или колоний микроорганизма, уровню продукции ферментов, наличию плазмид, вирулентности и т. п.

В мире не существует общепризнанной номенклатуры названия штаммов, и используемые названия достаточно произвольны. Как правило, они состоят из отдельных букв и цифр, которые записываются после видового названия. Например, один из самых известных штаммов кишечной палочки - E. coli K-12.

Плесневые грибы достаточно широко используются человеком.

  • Штаммы гриба Aspergillus niger применяются для производства лимонной кислоты из сахаристых веществ
  • Штаммы Botrytis cinerea («Благородная гниль») участвует в созревании некоторых вин (херес).
  • Другие виды плесеней (т. н. «благородная плесень») используются для выделки специальных сортов сыра (рокфор, камамбер).
  • Часто плесень поражает плодовые тела съедобных грибов и делает их непригодными для сбора. Но иногда такие грибы становятся особыми объектами грибной охоты, см. о «грибах-лобстерах» в статье Hypomyces lactifluorum .

Вред от плесневых грибов

Опасность для человека

Микотоксины и антибиотики

Многие плесневые грибы вырабатывают вторичные метаболиты -антибиотики и микотоксины, угнетающе или токсично действующие на другие живые организмы. Наиболее известны следующие вещества

  • Микотоксины:
    • Афлатоксин
  • Антибиотики:
    • Пенициллин
    • Цефалоспорины
    • Циклоспорин

Многие антибиотики вынужденно используются в концентрациях, близких к токсическим. Так, антибиотики гентамицин, стрептомицин, дигидрострептомицин, канамицин и другие могут оказать нефро- и ототоксическое действие.

Патогены

Некоторые плесневые грибы могут вызывать заболевания животных и человека - аспергиллёзы, онихомикозы и другие.

Плесневые грибы и сельское хозяйство

Некоторые плесневые грибы, существенно снижая урожай, могут оказывать неблагоприятное действие на здоровье сельскохозяйственных животных.

Грибы поражают запасы зерна, фураж, солому и сено. Иногда продукты становятся непригодными к использованию из-за токсичности метаболитов гриба.

При сильном развитии плесневых грибов в соломе возможно саморазогревание и даже воспламенение стогов.

Механизмы резистентности

  • У микроорганизма может отсутствовать структура на которую действует антибиотик (например бактерии рода микоплазма (лат. Mycoplasma ) нечувствительны к пенициллину, так как не имеют клеточной стенки);
  • Микроорганизм непроницаем для антибиотика (большинство грам-отрицательных бактерий невосприимчивы к пенициллину G, поскольку клеточная стенка защищена дополнительной мембраной);
  • Микроорганизм в состоянии переводить антибиотик в неактивную форму (многие стафилококки (лат. Staphylococcus ) содержат фермент β-лактамазу, который разрушает β-лактамовое кольцо большинства пенициллинов)
  • Вследствие генных мутаций, обмен веществ микроорганизма может быть изменён таким образом, что блокируемые антибиотиком реакции больше не являются критичными для жизнедеятельности организма;
  • Микроорганизм в состоянии выкачивать антибиотик из клетки [источник не указан 85 дней ] .

Применение

Антибио́тики (от др.-греч. ἀντί - anti - против, βίος - bios - жизнь) - вещества природного или полусинтетического происхождения, подавляющие рост живых клеток, чаще всего прокариотических или простейших.

По ГОСТ 21507-81 (СТ СЭВ 1740-79)

Антибиотик - вещество микробного, животного или растительного происхождения, способное подавлять рост микроорганизмов или вызывать их гибель.

Антибиотики природного происхождения чаще всего продуцируются актиномицетами, реже - немицелиальными бактериями.

Некоторые антибиотики оказывают сильное подавляющее действие на рост и размножение бактерий и при этом относительно мало повреждают или вовсе не повреждают клетки макроорганизма, и поэтому применяются в качестве лекарственных средств.

Некоторые антибиотики используются в качестве цитостатических (противоопухолевых) препаратов при лечении онкологических заболеваний.

Антибиотики не воздействуют на вирусы, и поэтому бесполезны при лечении заболеваний, вызываемых вирусами (например, грипп, гепатиты А, В, С, ветряная оспа, герпес, краснуха, корь).

Терминология

Полностью синтетические препараты, не имеющие природных аналогов и оказывающие сходное с антибиотиками подавляющее влияние на рост бактерий, традиционно было принято называть не антибиотиками, а антибактериальными химиопрепаратами. В частности, когда из антибактериальных химиопрепаратов известны были только сульфаниламиды, принято было говорить обо всём классе антибактериальных препаратов как об «антибиотиках и сульфаниламидах». Однако в последние десятилетия в связи с изобретением многих весьма сильных антибактериальных химиопрепаратов, в частности фторхинолонов, приближающихся или превышающих по активности «традиционные» антибиотики, понятие «антибиотик» стало размываться и расширяться и теперь часто употребляется не только по отношению к природным и полусинтетическим соединениям, но и к многим сильным антибактериальным химиопрепаратам.

Синтез различных классов интерферона человека в генетически сконструированных клетках микроорганизмов. Экспрессия генов, встроенных в плазмиду.

Цитокины представляют собой группу полипептидных медиаторов межклеточного взаимодействия, участвующих главным образом в формировании и регуляции защитных реакций организма при внедрении патогенов и нарушении целостности тканей, а также в регуляции ряда нормальных физиологических функций. Цитокины могут быть выделены в новую самостоятельную систему регуляции, существующую наряду с нервной и эндокринной системами поддержания гомеостаза, причем, все три системы тесно взаимосвязаны и взаимозависимы.

История изучения цитокинов началась в 40-е годы ХХ века. Именно тогда были описаны первые эффекты кахектина – фактора, присутствовавшего в сыворотке крови и способного вызывать кахексию или снижение веса тела. В дальнейшем данный медиатор удалось выделить и показать его идентичность фактору некроза опухолей (ФНО). За последние два десятилетия клонированы гены большинства цитокинов и получены рекомбинантные аналоги, полностью повторяющие биологические свойства природных молекул. Сейчас известно уже более 200 индивидуальных веществ, относящихся к семейству цитокинов.

К цитокинам относят интерфероны, колониестимулирующие факторы (КСФ), хемокины, трансформирующие ростовые факторы; фактор некроза опухолей; интерлейкины со сложившимися исторически порядковыми номерами и некоторые другие эндогенные медиаторы. Интерлейкины, имеющие порядковые номера, начиная с 1, не относятся к одной подгруппе цитокинов, связанных общностью функций. Они в свою очередь могут быть разделены на провоспалительные цитокины, ростовые и дифференцировочные факторы лимфоцитов, отдельные регуляторные цитокины.

Классификация цитокинов может проводиться по их биохимическим и биологическим свойствам, а также по типам рецепторов, посредством которых цитокины осуществляют свои биологические функции. Ниже приведена объединенная структурно-функциональная классификация, где все цитокины разделены на группы, в первую очередь с учетом их биологической активности, а также указанных выше особенностей строения молекул цитокинов и их рецепторов [Симбирцев А.С., 2004].

Классификация цитокинов

1. Интерфероны I типа (ИФН a,b,d,k,w,t, ИЛ-28, ИЛ-29 (ИФН l));

2. Колониестимулирующие факторы, гемопоэтины:

– Фактор стволовых клеток;

– Лиганды gp140 (ИЛ-3, ИЛ-5, ГМ-КСФ);

– Эритропоэтин, тромбопоэтин.

3. Семейство фактора некроза опухолей (ФНО, лимфотоксины α и β);

4. Суперсемейство интерлейкина-1 и фактора роста фибробластов (ФРФ):

– Семейство ФРФ

– Семейство ИЛ-1 (ИЛ-1α, ИЛ-1β, ИЛ-33 и др.).

5. Семейство интерлейкина-6 (ИЛ-6, ИЛ-11, ИЛ-31).

6. Семейство интерлейкина-10 (ИЛ-10,19,20,22,24,26)

7. Cемейство интерлейкина-12 (ИЛ-12,23,27)

8. Цитокины Т-хелперных клонов и регулирующие функции лимфоцитов (ИЛ-2, ИЛ-4-5, ИЛ-7, ИЛ-9, ИЛ-10, ИЛ-13, ИЛ-15, ИЛ-21, ИФНg)

9. Семейство интерлейкина 17 (ИЛ-17A, B, C, D, E, F)

10. Хемокины.

11.Факторы роста:

– Суперсемейство фактора роста нервов, тромбоцитарного ростового фактора и трансформирующих ростовых факторов

– Семейство эпидермального ростового фактора (ЭРФ, ТРФα и др.);

– Семейство инсулиноподобных ростовых факторов (ИРФ-I, ИРФ-II).

Цитокины могут быть выделены в новую самостоятельную систему регуляции основных функций организма, существующую наряду с нервной и эндокринной регуляцией и связанную в первую очередь с поддержанием иммуного гомеостаза при внедрении патогенов и нарушении целостности тканей. В рамках иммунной системы цитокины осуществляют двустороннюю взаимосвязь между факторами неспецифической защиты и специфическим иммунитетом.

В клинической практике существует три основных направления использования цитокинов:

1. цитокиновая терапия для активации защитных реакций организма, иммуномодуляции, либо восполнения недостатка эндогенных цитокинов;

2. антицитокиновая иммуносупрессивная терапия, направленная на блокирование биологического действия цитокинов и их рецепторов;

3. цитокиновая генотерапия в целях усиления противоопухолевого иммунитета или коррекции генетических дефектов в системе цитокинов.

Цитокины используются в клинической практике как для системного, так и для местного применения. Системное введение оправдывает себя в тех случаях, когда нужно обеспечить действие цитокинов в нескольких органах для боле эффективной активации иммунитета либо активировать клетки-мишени, расположенные в разных частях организма. Наибольшее клиническое применении в настоящее время нашли цитокины из группы интерферонов (ИФН), прежде всего альфа-ИФН и бета-ИФН, в меньшей степение гамма-ИФН.

Интерфероны – группа белков с противовирусным действием, вырабатываемая эукариотическими клетками в ответ на внедрение в них ряда биологических агентов – интерфероногенов (РНК-геномные вирусы, двунитчатые РНК, различные полианионы, бактериальные ЛПС).

ИФН обусловливают разнообразные эффекты, проявляющиеся как на клеточном, так и на системном уровне. Для ИФН характерно наличие трех основных эффектов – неспецифического противовирусного, противоопухолевого и иммуномодулирующего. Интерфероны обладают осуществляют ингибицию репродукции многих вирусов. Противовирусное действие интерферона основывается на подавлении соединения вирусной РНК с рибосомами клетки, что приводит к невозможности осуществления репродукции вируса в клетке.

В 70-х годах все ИФН подразделяли на 2 типа: индуцированные вирусами (лейкоцитарный и фибробластный), которые относили к первому типу и индуцированные мутагенами (иммунный) - ко второму. В настоящее время эта классификация утратила свое значение. В 1980 г. комитетом экспертов Всемирной организации здравоохранения была принята и рекомендована к использованию классификация, согласно которой все ИФН человека подразделяют на 3 класса. Они кодируются различными генами и имеют характерную для каждого класса последовательность аминокислот, из которых построены их молекулы. При наличии рекомбинантных вариантов ИФН их обычно обозначают римскими буквами.

Таблица 11- Классификация интерферонов человека

В настоящее время все полученные знания о ИФН можно обобщить в науку «интерфенология», которая включает теоретические и практические (медицинские и фармацевтические) аспекты этой проблемы. В последнее десятилетие произошло 4 важнейших события в интерфенологии (выделены проф. Ф. И. Ершовым, 1996):

Сформулировано понятие «система интерферона» и выявлены ее прямые и обратные связи с системами иммунитета и нейроэндокринной системой;

Открыта множественность генов ИФН-ct (более 20 в клетках человека);

С помощью современных технологических приемов усовершенствованы существующие и созданы препараты ИФН нового поколения, прошли апробацию оригинальные индукторы ИФН;

Определены показания и противопоказания для клинического использования ИФН и их индукторов при вирусных и невирусных заболеваниях.

В качестве индуктора интерфероногенеза используют вакцинный штамм вируса болезни Ньюкасла или вирус Сендай. Предварительное культивирование вирусов проводят в развивающихся 9-11 сут. куриных эмбрионах. Основные технологические операции: овоскопия, отбраковка, инкубирование куриных эмбрионов, введение инфекционной взвеси в аллантоисную полость с последующим инкубированием в течение 48-72 часов и стягиванием инфицированной жидкости у погибших куриных эмбрионов. Вирусосодержащую аллантоисную жидкость центрифугируют

Очень важной операцией, определяющей качество готового препарата, является удаление из лейкоконцентрата примесей эритроцитов (стадия 1). Наиболее полно устраняет присутствие эритроцитов в лейкоконцентрате их избирательный лизис раствором хлористого аммония в физиологической концентрации.

Таблица 12- Технологическая схема биосинтеза ИФН-а

Технологическая стадия Условия
1. Выделение лейкоцитов Фракционирование лейкомассы с декстра-
ном и поливиниловым спиртом с после-
дующим гемолизом. При этом образуется 3
слоя. 2 верхних слоя подвергают центрифу-
гированию и ресуспендированию осадка в
питательной среде.
2. Прайминг (активирование Лейкоциты 10-20 млн/мл в среде № 199 с
метаболизма лейкоцитов)- 5% плазмы донорской крови, 3 ед/мл,
2-10 ч, 37,5°С 0,0015 ед/мл инсулина, 200 МЕ/мл нативного
ИФН
3. Введение вируса индуктора
3.1.Индукция 1 ч, 37,5°С Вирус болезни Ньюкасла (ВБН), в дозе 5
РЦЦ 50 на 1 лейкоцит
3.2.Отделение неабсорбиро- Центрифугирование 600х д - 15 мин.,
вавшегося вируса сбор осадка индуцированных клеток.
4. Биосинтез 18 ч, 37,5°С Суспензионная культура Лейкоциты 6 млн/мл в среде № 199 с 5% гаммаглобулиновой плазмой, 5мл натрия сукцината, бикарбонат натрия до рН 7,5, антибиотики. Выход ИФН-а 3-4 ME на 1 тыс. лейкоцитов.
5.Инактивация вируса интерферона Доведение рН среды до 2,2-2,4 и экспозицией полуфабриката не менее 7 суток.
6. Очистка интерферона Поэтапно: осветляющая, ультрафильтрация, стерилизующая фильтрация

На этапе культивирования лейкоцитов (стадия 2) лейкоконцентрат ресуспендируют в культуральной жидкости, которая, помимо основных компонентов, содержит некоторые белки сыворотки крови, без которых биосинтез ИФН практически не происходит. Также установлено, что при культивировании лейкоцитов, особенно при большой плотности суспензии (10 7 клеток/мл), в них активируются метаболитические процессы, что сопровождается образованием кислых продуктов. В связи с этим важно в период прайминга и биосинтеза ИФН сохранять рН среды в оптимальных пределах. Для поддержания рН среды на необходимом уровне к среде добавляют различные вещества, обладающие буферной емкостью.

Оптимальные условия при выработке ИФН (стадия 4) создаются при культивировании лейкоцитов при 37-37,5°С. Снижение температуры инкубирования до 35°С и ниже, или, напротив, повышение ее до 38°С и выше приводило значительному ослаблению продукции ИФН.

ИФН-а может продуцироваться как в стационарных условиях культивирования, так и в культурах с постоянным перемешиванием клеток. Считается, что клетки во взвешенном состоянии более интенсивно вырабатывают ИФН-а. Большое значение для выживания клеток в суспензионных культурах имеет форма сосудов, высота слоя жидкости и достаточные количества кислорода в воздушной среде. Оптимальные условия для получения титров ИФН-а создаются при культивировании лейкоцитов в круглодонных колбах, накрытых фольгой, заполненных клеточной взвесью наполовину, при постоянном перемешивании. Предварительная обработка лейкоцитов малыми дозами ИФН-а приводила к увеличению выхода ИФН в 3-10 раз.

После ресуспендирования лейкоциты индуцируют аллантоисными (без оболочки) вирусами болезни Ньюкасл или Сендай. После инкубации в течение 20 часов при температуре 37,5°С, во время которой преимущественное значение имеет поддержание жизнеспособности культур и высокого метаболизма клетки при постоянстве рН, клетки отделяют низкоскоростным центрифугированием (2 000 об/мин.) в течение 40 минут. Активность интерферона в препаратах, полученных в результате описанной процедуры, составляют 30-200 000 ЕД/мл.

В современной биотехнологии все более широко используются методы генной инженерии. Уже во многих лабораториях мира успешно получают и интегрируют в генетический аппарат культивируемых бактериальных или соматических клеток гены, кодирующие образование ряда биологически активных веществ.

Функциональные гены для биотехнологического производства воссоздают методом обратной транскрипции или синтезируют из отдельных нуклеотидов, выделяя из ДНК соответствующих хромосом.

Опыты по переносу генов ИФН человека в бактериальные клетки были начаты в конце 70-х годов. Почти одновременно в 3 научно-исследовательских группах: в Институте молекулярной биологии I Цюрихского университета под руководством Вейсмана, в отделе биохимии Института по исследованию рака в Токио под руководством Т.Танигучи и в США филиалом фирмы «Genentech» под руководством Дж. Геддела.

Все три группы исследователей использовали для клонирования метод обратной транскрипции мРНК интерферонов. В качестве примера рассмотрим ход экспериментов группы Вейсмана.

Для клонирования гена а-ИФН в качестве исходного материала использовали фракцию 12 S поли (А) мРНК (информационная аденилированная РНК), полученную из клеток лейкоцитов, индуцированных вирусом Сендай. На базе информационной РНК получена комплементарная ей ДНК, состоящая из 2 цепей. Полученная двухспиральная ДНК была расщеплена с помощью рестриктаз путем образования липкого конца олиго-dG. Аналогичная операция была проведена с плазмидой с образованием липкого олиго-dС-конца. С помощью лигаз осуществлено встраивание комплементарного ДНК, содержащей информацию о структуре а-ИФН в плазму pBR322.

Эта плазмида несет в своем составе гены, определяющие устойчивость к двум антибиотикам: тетрациклину и ампицилину. Вставка ДНК интерферона инактивирует ген, ответственный за устойчивость к ампицилину, поэтому первичный отбор клеток, получивших гибридные плазмиды, шел по устойчивости к тетрациклину.

Для отбора нужных клонов использовали следующий метод: смесь нескольких плазмид из разных клонов, одна из которых может содержать ДНК интерферона, денатурируют и связывают с твердой подложкой. С этой ДНК гибридизируют образцы РНК, полученные из продуцирующих ИФН клеток человека, фильтры промывают, элюируют РНК в денатурирующих условиях и элюат инъекцируют в овоциты африканской зеленой лягушки для выявления мРНК интерферона. Среди гибридизирующихся клонов выбран один, названный Hif-2h, имеющий вставку соответствующую размеру полного гена a- ИФН.

Клетки кишечной палочки, содержащие гибридные плазмиды, несущие такую вставку способны синтезировать полипептид с биологической активностью интерферона.

Работы по клонированию генов интерферона были повторены и развиты как названными выше авторами, так и другими группами исследователей во многих странах. В СССР первое успешное клонирование гена лейкоцитарного интерферона описано в 1982г. акад. Овчинниковым, фибробластного в 1983 г. -Ю.И. Козловым, иммунного - в 1985 г. Е.Д. Свердловым.

В настоящее время экспрессия генов ИФН произведена не только в клетки кишечной палочки, но и в клетки других грамотрицательных бактерий (Pseudomonas) - лежит в основе промышленного производства ИФН в России. В настоящее время считается, что наиболее эффективно использование для этих целей дрожжей.

Дрожжи рода Saccharomyces не патогенны для человека, имеют многовековой опыт их использования. Дрожжи не подвержены лизису, автолизу, легко сепарируются, используют дешевые субстраты. Биомасса дрожжей не содержит токсичных и пирогенных факторов, как клетки грамотрицательных бактерий.

Весьма важным обстоятельством является также сходство секреторных механизмов дрожжей и высших эукариот, это позволяет предположить, что клонированные гены преинтерферонов смогут давать зрелый ИФН в результате правильного процессинга.

Отработана технология массового культивирования клеток-продуцентов рекомбинантного ИФН. Так, для отечественного препарата реаферона она включает:

· культивирование бактериального штамма-продуцента реаферона в ферментерах объемом 100 л с выходом 5-7x103 ME из 1 л культуральной жидкости,

· разрушение биомассы методом, позволяющим увеличить процесс с 60-70 %-ным выходом целевого продукта,

· предварительную очистку реаферона на ионнообменнике; окончательную очистку препарата проводят на иммуносорбенте с моноклональными антителами к лейкоцитарному ИФН-а типа 5АС.

Основным продуцентом рекомбинантного ИФН являются бактериальные штаммы, в цитоплазме, которых синтезируется ИФН и составляет лишь доли процента от общей массы бактериальных белков. После накопления в специальных ферментерах достаточно высокой концентрации клеток их удаляют из ферментера и разрушают (лизируют). В качестве основных методов лизиса используют: осмотический шок, замораживание-оттаивание, гомогенизирование, обработку детергентами. Затем с помощью последовательных процедур фильтрования, центрифугирования, ионообменной хроматографии и гель-хроматографии происходит предварительная очистка ИФН, дающая в итоге прозрачный бактериальный экстракт, в котором ИФН все еще составляет не более 1-2% от общего количества белка. Окончательную очистку препарата на иммуносорбенте с моноклональными антителами к ИФН.

Моноклональные антитела к ИФН «пришивают» к гранулам носителя и помещают в хроматографическую колонку. Затем наносят на колонку бактериальный экстракт, содержащий рекомбинантный ИФН. С антителами связывается лишь ИФН, другие же компоненты экстракта, в том числе все бактериальные токсины, свободно проходят через колонку и удаляются промывным раствором. Для извлечения из колонки адсорбировавшийся на антителах рекомбинантный ИФН через нее пропускают элюирующий буферный раствор, имеющий слабокислую реакцию. При этом связь между молекулами ИФН и антителами нарушается. ИФН переходит с поверхности частиц сефарозы в буферный раствор и может быть собран в виде чистого вещества, не содержащего загрязняющих белков.

Стремительное расширение использования рекомбинантных ИФН и параллельное сокращение в последнее время применения природных препаратов связано, главным образом, с дефицитом сырья для производства последних (донорская кровь), а также с распросранением вирусных заболеваний, передающихся через кровь (ВИЧ, гепатит С). В связи с чем, несмотря на наличие некоторых преимуществ препаратов природных ИФН, в клинике используются практически только рекомбинантные препараты.

Семейство ИФН-а содержит около 20 подтипов, поэтому природные препараты - Человеческий лейкоцитарный интерферон, Эгиферон, Вэлферон многокомпонентны и содержат все или, по крайней мере, большинство из подтипов. Природные ИФН не обладают антигенными свойствами и не вызывают сенсибилизации при длительном многократном введении. Некоторые рекомбинантные ИФН, напротив, при введении инъекционным путем могут вызвать образование нейтрализующих или связывающих антител.

Наиболее часто используются постые (непегилированные) и пегилированные альфа- и бета-ИФН. Например рекомбинантные ИФН-a2а (Реаферон, Роферон, Пегасис), рекомбинантные ИФН-a2b (Интрон А, Реальдирон, Пег-Интрон), являющиеся аналогами природных подтипов с точечными мутациями в белковой структуре lis-his, arg-his, arg-arg, соответственно, которые мало влияют на активность, но существенны с точки зрения сенсибилизации. Так препараты ИФН-a2а, не являющиеся характерными для человеческой популяции, имеют большой риск вызвать сенсибилизацию и образование антител, которые в высоких титрах будут снижать их терапевтический потенциал.

Иммунный интерферон (гамма-ИФН) может рассматриваться в качестве компонента лекарственных средств, предназначенных для лечения вирусных, онкологических и аутоиммунных заболеваний. За рубежом создан ряд препаратов на его основе: Иммунерон (США), Иммуномакс (Япония), Имукин (Германия). В России разработана эффективная схема получения высокоочищенного Дельтаферона, основанная на двух последовательных хроматографиях на одном сорбенте, но при разных значениях рН. Данная схема позволяет получать рекомбинантный Дельтаферон в препаративных количествах с допустимым содержанием высокополимерных примесей. Изменения в белковой молекуле (укорочение молекулы на 10 аминокислот и 3 аминокислотные замены) привели к 20-кратной потере антивирусной активности по сравнению с полноразмерным ИФН-γ, но не сказались на его иммуномодулирующих свойствах. В результате данной модификации у дельтаферона появилась устойчивость к протеолитическим ферментам. Разработаны экспериментальные лекарственные формы дельтаферона, которые позволяют сохранять белок в нативном состоянии без потери специфической активности. ЛФ дельтаферона обладают присущими исходному гамма-интерферону иммуномодулирующими свойствами.

С фармакологической точки зрения препараты ИФН должны рассматриваться, прежде всего, как иммуномодуляторы, оказывающие воздействие на функциональную активность эффекторных клеток иммунной системы и прежде всего Т-лимфоцитов и моноцитов (макрофагов). Под действием ИФН повышается эффективность иммунного распознавания антигена и усиливаются фагоцитарная и цитолитическая функции, направленные на элиминацию возбудителя или антигенно-измененных клеток. Интерферон циркулирует в организме около 2-х недель, что следует учитывать при применении его как профилактического средства.

Многолетний опыт показал, что при интраназальном введении ИФН обладает выраженной профилактической эффективностью в отношении различных вирусов гриппа и парагриппа. Защитное действие наиболее выражено при ежедневном применении препарата с помощью ингаляторов или распылителей. Многократные интраназальные инсталляции или ингаляционное введение раствора препарата через нос и рот в форме аэрозоля в течение первых двух дней болезни приводило к более быстрому снижению явлений интоксикации и лихорадочной реакции. Быстрее уменьшались и выраженность воспалительных явлений в верхних дыхательных путях. Исследования последних лет показали, что ИФН подавляет размножение опухолевых клеток, что делает его эффективным при лечении опухолевых заболеваний. Противоопухолевое действие ИФН можно объяснить стимуляцией естественных защитных механизмов организма, в частности на лимфоциты, которые убивают раковые клетки или образуют антитела.

К настоящему времени определен круг заболеваний, при которых эффективно использование ИФН. Из вирусных инфекций - это ОРВИ, грипп, энцефалиты, вирусные гепатиты, герпетические поражения глаз (конъюнктивиты, кератоконъюктивиты), слизистых оболочек и глаз. По мнению клиницистов при герпетических поражениях кожи и слизистых оболочек следует отдавать предпочтение местному применению препарата. ИФН нашел применение при пересадках органов как средство, предупреждающее вторичные вирусные инфекции. Краткий анализ позволяет заключить, что ИФН способен положительно влиять на развитие самых различных заболеваний вирусной этиологии. Его эффективность наиболее выражена при острых инфекциях, на ранних сроках заболевания. При клиническом использовании следует отдавать предпочтение местному введению, обеспечивающему минимальный расход препарата. Кроме того, местное применение позволяет избежать отрицательных явлений, наблюдающихся при системном введении высоких доз ИФН.

Каждая лекарственная форма имеет свою область применения, обусловленную ее иммунобиологическими и фармакологическими свойствами. Это положение формулируется следующим образом:

Препараты ИФН не должны вызывать явлений сенсибилизации при длительном многократном применении прерывистыми курсами. Биосинтез ИФН для приготовления различных лекарственных форм может проводиться по единой технологической схеме, но способы очистки ИФН и ее критерии должны отвечать задачам терапии. В инъекционных лекарственных формах примеси, антигенные для человека, должны отсутствовать. Их уровень в препаратах для местного пользования должен быть ниже порога сенсибилизации.

Теоретически в природных препаратах ИФН-a могут присутствовать 3 основные группы антигенов:

· антигены вируса-индуктора и куриной аллантоисной жидкости;

· эритроцитарные антигены, определяющие группу крови и резус-принадлежность;

· лейкоцитарные антигены HLA.

Биотехнология получения ИФН должна включать операции, ограничивающие возможность проникновения этих антигенов в лекарственные формы. Технологически наиболее трудной задачей является удаление анитигенов I группы, так как на стадии индукции их вводят в суспензию в большом количестве.

Препараты природного ИФН-a в зависимости от методов очистки можно разделить на две группы - нативные и концентрированные. Препараты нативного типа по белковому составу практически не отличается от исходных полуфабрикатов, характеризуются невысокой удельной активностью - до 1-104 ME на 1 мг белка, но сохраняют все цитокины, продуцированные в процессе интерфероногенеза, в их естественном соотношении. Поэтому они обладают высоким потенциалом иммунобиологического действия.

Биотехнология получения концентрированных препаратов включает химическую очистку, что приводит к снижению потенциала иммунобиологического действия из-за утраты цитокинов. Однако эти препараты представляют также ценность для практического здравоохранения. Например, высококонцентрированный человеческий лейкоцитарный ИФН – ЧЛИ для инъекций –пока незаменим в ситуациях, когда необходимо ввести высокие разовые дозы (лимфобластный лейкоз в стадии обострения), а также при лечении вирусных и онкологических поражений, локализованных за гематоэнцефалическим барьером. К препаратам концентрированного типа относится и интерлок, который успешно применяют для местного лечения вирусных поражений глаз.

Третью группу составляют рекомбинантные ИФН, представленные реафероном и реальдоном. При многих формах патологии препараты для местного применения (интраназальные капли, мазь, ректальные суппозитории, глазные пленки и др.) более эффективны, чем инъекционные. Например, при активном хроническом ВГВ использование ректальных суппозиториев, содержащих всего 100 000 ME ИФН-а, дает такие же результаты, как и внутримышечное введение высококонцентрированного препарата в дозе 3 ME. Расход препарата и стоимость лечения при применении ректальных суппозиториев снижается в десятки раз.

Современные рекомбинантные препараты ИФН:

Реаферон (человеческий рекомбинантный ИФН-а2) производство НПО «Вектор» г. Новосибирск.

· получен при культивировании бактериального штамма Pseudomonas sporogenosa, содержащего в своем генетическом аппарате встроенную рекомбинантную плазмиду гена ИФН-а2 человека.

· предназначен для внутримышечного, субконъюнктиванного и местного применения.

Выпускается в виде лиофилизированного порошка в ампулах.

Интрон А (человеческий рекомбинантный ИФН-a2b) фирмы Schering Plough -США.

Препарат получен по рекомбинантной ДНК-технологии с использованием бактериальных E.coli, содержащих встроенный генно-инженерным путем ген, кодирующий этот человеческий белок.

Спецификация активности 2*108 МЕ/мг белка.

Введение больших доз белка сопровождается повышением температуры, появлением головной боли, расстройством желудочно-кишечного тракта (тошнота, иногда обострение гепатита), возникают нарушения в работе сердечно-сосудистой системы.

На основании изучения онтогенеза системы ИФН разработан новый отечественный препарат виферон-суппозитории, включающие в себя рекомби-нантный ИФН-а, и препараты антиоксидантного действия. Виферон положительно зарекомендовал себя при лечении вирусных и бактериальных заболеваний у новорожденных детей: внутриутробный герпес, хламидиоз, ОРВИ, кандидоз

Пегилированные интерфероны

Противовирусная терапия - одна из основных областей перспективного использования пегилированных препаратов пептидной структуры. Ярким примером использования концепции пегилирования биотехнологических препаратов является создание пегилированных интерферонов (пег-ИФН). К клинической практике, в настоящее время, применяются пегилированные аналоги альфа-интерферона - ПЭГ-интерферона-альфа 2b (Пегинтрон; Shering Plough) и ПЭГ-интерферона-альфа 2а (Пегасис; Hoffmann La Roche).

интерферон лейкоцит ген вирус

В настоящее время более перспективным признан способ получения интерферона микробиологическим синтезом, который обеспечивает возможность получения целевого продукта со значительно более высоким выходом из сравнительно недорогого исходного сырья. Используемые при этом подходы позволяют создать оптимальные для бактериальной экспрессии варианты структурного гена, а также регуляторных элементов, контролирующих его экспрессию .

В качестве исходных микроорганизмов используют различные конструкции штаммов Pichia pastoris, Pseudomonas putida и Escherichia coli.

Недостатком использования P. pastoris в качестве продуцента интерферона, является крайне сложные условия ферментации этого типа дрожжей, необходимость строго поддерживать концентрацию индуктора, в частности метанола, в процессе биосинтеза.

Недостатком использования штаммов Ps. putida является сложность процесса ферментации при низком уровне экспрессии (10 мг интерферона на 1 л культуральной среды). Более продуктивным является использование штаммов Escherichia coli .

Известно большое количество плазмид и созданных на их основе штаммов Е. coli, экспрессирующих интерферон: штаммы Е. coli ATCC 31633 и 31644 с плазмидами Z-pBR322 (Psti) HclF-11-206 или Z-pBR 322(Pstl)/HclN SN 35-AHL6 (SU 1764515), штамм Е. coli pINF- AP2 (SU 1312961), штамм Е. coli pINF- F-Pa (AU 1312962), штамм E.Coli SG 20050 с плазмидой p280/21FN, штамм E.Coli SG 20050 с плазмидой pINF14 (SU 1703691), штамм E.coli SG 20050 с плазмидой pINF16 (RU 2054041) и др. Недостатком технологий, основанных на использовании этих штаммов, является их нестабильность, а также недостаточный уровень экспрессии интерферона.

Наряду с особенностями используемых штаммов эффективность процесса во многом зависит от используемой технологии выделения и очистки интерферона.

Известен способ получения интерферона, включающий в себя культивирование клеток Ps. putida, разрушение биомассы, обработку полиэтиленимином, фракционирование сернокислым аммонием, гидрофобную хроматографию на фенилсилохроме С-80, рН-фракционирование лизата, его концентрирование и диафильтрацию, ионообменную хроматографию на целлюлозе DE-52, элюирование в градиенте рН, ионообменную хроматографию полученного элюента на целлюлозе СМ-52, концентрирование пропусканием через кассету фильтров и гель-фильтрацию на Сефадексе G-100 (SU 1640996). Недостатком этого способа кроме сложной многостадийной ферментации является многостадийность при получении конечного продукта.

Известен также способ получения интерферона, включающий в себя культивирование штамма E.coli SG 20050/pIF16, в LB-бульоне в колбах в термостатированном шейкере, центрифугирование биомассы, ее промывку буферным раствором и обработку ультразвуком для разрушения клеток. Полученный лизат центрифугируют, промывают 3М раствором мочевины в буфере, растворяют в растворе гуанидин хлорида в буфере, обрабатывают ультразвуком, центрифугируют, проводят окислительный сульфитолиз, диализ против 8 М мочевины, ренатурацию и окончательную двухстадийную хроматографию на СМ-52 целлюлозе и сефадексе G-50 (RU 2054041) .

Недостатками этого способа является его относительно невысокая производительность основных этапов процесса выделения и очистки. В особенности это относится к ультразвуковой обработке продукта, диализу и окислительному сульфитолизу, что приводит к нестабильности выхода интерферона, а также к невозможности использования этого метода для промышленного производства интерферона.

В качестве наиболее близкого аналога (прототипа) может быть указан способ получения лейкоцитарного интерферона человека, заключающийся в культивировании рекомбинантного штамма E.coli, замораживании полученной биомассы при температуре не выше -70°С, размораживании, разрушении клеток микроорганизма лизоцимом, удалении ДНК и РНК введением в лизат ДНК-азы и очисткой выделенной нерастворимой формы интерферона отмывкой буферным раствором с детергентами, растворении осадка интерферона в растворе гуанидин гидрохлорида, ренатурации и одностадийной очистке ионообменной хроматографией. В качестве продуцента используют штамм E.coli SS5, полученный с помощью рекомбинантной плазмиды pSS5, содержащей три промотора: Plac, Pt7 и Ptrp, и ген альфа -интерферона с введенными нуклеотидными заменами.

Экспрессия интерферона штаммом E.coli SS5, содержащим эту плазмиду, контролируется тремя промоторами: Plac, Pt7 и Ptrp. Уровень экспрессии интерферона составляет около 800 мг на 1 л клеточной суспензии .

Недостатком способа является низкая технологичность использования ферментативного разрушения клеток, ДНК и РНК микроорганизма и одностадийная хроматографическая очистка интерферона. Это обуславливает нестабильность процесса выделения интерферона, приводит к снижению его качества и ограничивает возможность использования приведенной схемы для промышленного производства интерферона.

Недостатками данной плазмиды и штамма на ее основе являются использование в плазмиде сильного нерегулируемого промотора фага Т7 в штамме Е. coli BL21 (DE3), в котором ген Т7 РНК полимеразы находится под промотором lac оперона и который всегда "течет". Следовательно, в клетке непрерывно происходит синтез интерферона, что приводит к диссоциации плазмиды и снижению жизнеспособности клеток штамма, и в результате - снижение выхода интерферона.

Пример получения рекомбинантного интерферона:

600 г биомассы клеток Pseudomonas putida 84,содержавших рекомбинантную плазмиду p VG-3, после культивирования содержали 130 мг альфа-2 интерферона. Клетки загружали в емкость баллистического дезинтегратора с механической мешалкой вместимостью 5,0 л и приливали к ней 3,0 л лизисного буфера, содержащего 1,2% хлористого натрия, 1,2% трис-(гидроксиметил)-аминометана, 10% сахарозы, 0,15% этилендиаминтетрауксусной кислоты (ЭДТА), 0,02% фенилметилсульфонилфторида и 0,01% дитиотреитола при рН 7,7. Биомассу перемешивали до получения однородной суспензии в течение 30 мин, затем дезинтегрировали в циркуляционном режиме в баллистическом дезинтеграторе в соответствии с инструкцией по эксплуатации. Время дезинтеграции составляло 1,5 ч. Процесс дезинтеграции заканчивали, когда при микроскопировании препарата в нескольких полях зрения микроскопа практически не наблюдается целых клеток микроорганизмов. Объем суспензии лизированной биомассы составил 3,5 л.

Полученный на данной стадии лизат затем поступал на стадию осаждения нуклеиновых кислот. Для этого в емкость, содержащую лизат при перемешивании со скоростью 1-1,2 л/ч подавали 180 мл 5% раствора полиэтиленимина. Суспензию перемешивали в течение 1 ч и центрифугировали для отделения осадка нуклеиновых кислот 1 ч при (9500±500) об/мин, при температуре (5±2)С. После центрифугирования отделяли супернатант, объем которого составлял 3,0 л .

При медленном перемешивании мешалкой в супернатант всыпали 182 г сухого сульфата аммония малыми порциями (каждую следующую порцию добавляли после полного растворения предыдущей). После окончания внесения сульфата аммония перемешивание продолжали до полного растворения соли и суспензию осадка белков выдерживали при температуре (5±2)С 16 ч, а затем центрифугировали в течение 1 ч при (13500±500) об/мин при температуре (5±2)С.

Полученный осадок растворяли в дистиллированной воде, доводя общий объем до 4 л. Для осаждения сопутствующих белков проводили кислотное фракционирование полученного раствора, содержащего альфа-2 интерферон. Для этого в раствор добавляли 5,0 мл 50%-ной уксусной кислоты до рН 4,75. Полученную смесь переносили в холодильник и оставляли при температуре (5±2)С в течение 3 ч, затем центрифугировали суспензию белков при (13500±500) об/мин 30 мин при (5±2)С.

К 4 л супернатанта добавляли 50,0 мл 1 М раствора Триса до рН (6,9±0,1). Концентрация общего белка, определенная методом Лоури, составляла 9,0 мг/мл, биологическая активность альфа-2 интерферона (6,80,5)106 МЕ/мл. Удельная активность 8,5105 МЕ/мг. Общее содержание альфа-2 интерферона на данной стадии 2,91010 ME.

Сорбент Солоза КГ в количестве 0,6 л в виде водной взвеси помещали в хроматографическую колонку. Затем с помощью перистальтического насоса через сорбент последовательно пропускали 2,0 л 0,2 М раствора гидроокиси натрия, 6,0 л дистиллированной воды и 4,5 л 0,05 М трис-ацетатного буферного раствора при рН (7,1±0,1), который на выходе из колонки контролировали рН-метром.

Раствор белков, содержащий альфа-2 интерферон, разбавляли дистиллированной водой до проводимости (6,0+2,0) мСм/см при комнатной температуре. Объем раствора при этом составил 19,2 л.

Раствор наносили на колонку со скоростью 1,5 л/час, затем промывали сорбент 2,0 л трис-ацетатного буфера 0,05 М при рН 7,0. Элюцию проводили 1,2 л 0,05 М раствором Триса с рН (10,2±0,1) Содержание интерферона во фракциях, собранных с помощью коллектора фракций, определяли иммуноферментным методом.

Концентрация общего белка, определенная методом Лоури, составляет (2,2±0,2) мг/мл, биологическая активность альфа-2 интерферона (2,1±0,5)107 МЕ/мл, удельная активность препарата (9,7±0,5)106 МЕ/мг. Общее содержание альфа-2 интерферона на данной стадии составляет (1,5±0,5)1010 ME.

Сорбент Сфероцелл qae в количестве 0,15 л в виде водной суспензии загружали в колонку и промывали со скоростью 0,15 л/ч последовательно 0,5 л 2 М раствора хлористого натрия, 1,5 л дистиллированной воды и 1,0 л трис-ацетатного буферного раствора 0,05 М с рН 8,0, контролируя рН буферного раствора на выходе из колонки рН-метром .

Раствор белков объемом 0,7 л, содержащий альфа-2 интерферон наносили на колонку с сорбентом Сфероцелл-QAE объемом 0,15 л со скоростью 0,2 л/час. Промывку колонки осуществляли трис-ацетатным 0,05 М буферным раствором (рН 8,0) объемом 0,1 л, затем примесные белки отмывали 1,0 л того же буферного раствора с добавлением 0,05 М NaCI. Элюцию интерферона проводили 0,8 л 0,1 М натрий-ацетатным буферным раствором при рН 5,0. Содержание альфа-2 интерферона во фракциях, собранных с помощью коллектора определяли иммуноферментным методом. Концентрация белка составляла (0,35±0,05) мг/мл, биологическая активность альфа-2 интерферона (1,7±0,2)107 МЕ/мл. Удельная активность препарата 5,5107 МЕ/мг белка. Элюат содержал 1,20х1010 ME. Выход по биологической активности на данной стадии 82,5%.

Полученный раствор доводили до рН (5,0±0,1) 50% уксусной кислотой и разбавляли 0,05 М натрий-ацетатным буферным раствором. Удельная электропроводность составила (0,29±0,02) мСм/см при температуре (5±2)С. Подготовленный таким образом раствор белка наносили на колонку с сорбентом Сфероцелл ЛП-М со скоростью 0,1 л/ч, промывали 0,3 л вышеуказанного буферного раствора, а затем элюировали интерферон с помощью линейного градиента концентрации хлористого натрия, создаваемой с помощью градиентного смесителя Ультроград Элюат фракционировали с помощью коллектора фракций и измеряли концентрацию общего белка и альфа-2 интерферона. Концентрация белка в объединенных фракциях (0,45±0,02) мг/мл. Объем раствора 0,1 л. Общее содержание альфа-2 интерферона (8,6±0,2)109 ME. Удельная активность - е (7,5±0,2)107 МЕ/мг. Выход на данной стадии 73%.

Полученный 3 раствор объемом 0,1 л концентрировали до (5,0±0,2) мл с помощью ячейки для ультрафильтрации, используя мембрану Amicon YM-3. Подготовленный таким образом образец наносили на колонку с сорбентом Сефадекс G-100, уравновешенную фосфатно-солевым буфером со скоростью 0,025 л/ч. Объем фракций составляет 10,0 мл. Полученные после хроматографии фракции проверяли на содержание альфа-2 интерферона иммуноферментным методом и объединяя фракции, содержащие основной пик альфа-2 интерферона. Объем полученного раствора составил 30,2 мл. Концентрация общего белка, определенная методом Лоури, (0,90±0,02) мг/мл. Общее содержание альфа-2 интерферона в растворе 5,5109 ME. Удельная активность полученного препарата альфа-2 интерферона 2,3108 МЕ/мг. Выход по альфа-2 интерферону на данной стадии составляет 90,2%. Полученный продукт стерилизовали и расфасовывали. Общий выход препарата 35,8%, в том числе на стадии очистки 51% .

Для получения больших количеств ИФН используют шестидневные однослойные культуры клеток куриного эмбриона или культивируемые лейкоциты крови человека, зараженные определенным видом вируса. Иными словами, для получения ИФН создают определенную систему вирус-клетка .

Из клетки человека изолирован ген, ответственный за биосинтез ИФН. Экзогенный человеческий ИФН получают, используя технологию рекомбинантных ДНК. Процедура выделения кДНК ИФН-ов состоит в следующем:

1) Из лейкоцитов человека выделяют мРНК, фракционируют ее по размерам, проводят обратную транскрипцию, встраивают в сайт модифицированной плазмиды.

2) Полученным продуктом трансформируют Е. соli; образовавшиеся клоны подразделяют на группы, которые идентифицируют.

3) Каждую группу клонов гибридизируют с ИФН - мРНК.

4) Из образовавшихся гибридов, содержащих кДНК и хРНК, выделяют мРНК, проводят ее трансляцию в системе синтеза белка.

5) Определяют интерферонную противовирусную активность каждой смеси, полученной в результате трансляции. Группы, проявившие интерферонную активность, содержат клон с кДНК, гибридизировавшийся с ИФН - мРНК; повторно идентифицируют клон, содержащий полноразмерную ИФН - кДНК человека .


Похожая информация.


Использование: биотехнология, медицинская промышленность. Сущность изобретения: конструируют рекомбинантную плазмиду pSV69, включающую фрагмент ДНК-кодирующий предшественник иммунного интерферона человека; трансформируют полученным рекомбинантным вектором линию клеток СОS-7, отбирают трансформированные клетки, которые культивируют в условиях, обеспечивающих накопление целевого продукта, и выделяют зрелую форму интерферона без N-концевых Сys-Туr-Сys (des-Суs-Тyr- Сysинтерферон). 8 ил.

Изобретение относится к технологии рекомбинантных ДНК, к средствам и способам использования такой технологии при раскрытии последовательности ДНК и определяемой ею последовательности аминокислот для иммунного интерферона человека, его получения, а также к полученным при этом различным продуктам и их использованию. Более конкретно настоящее изобретение относится к выделению и идентификации последовательностей ДНК, кодирующих иммунный интерферон человека и к построению рекомбинантного вектора экспрессии, содержащего эти последовательности ДНК, оперативно связанные с последовательностями промотора, и к осуществлению экспрессии с полученными таким образом векторами. В другом аспекте настоящее изобретение относится к системам культуры хозяина, таким как различные микроорганизмы и культуры клеток позвоночных, трансформированные векторами экспрессии и таким образом направленные на экспрессию указанных ранее последовательностей ДНК. Еще в одном аспекте настоящее изобретение относится к средствам и способам превращения конечных продуктов такой экспрессии в новые объекты, такие как фармацевтические композиции, пригодные для лечения и профилактики людей. В предпочтительных вариантах настоящее изобретение предлагает конкретные векторы экспрессии, которые имеют такие последовательности, что иммунный интерферон человека продуцируется и выделяется из клеток хозяина в зрелом виде. Кроме того, настоящее изобретение относится к различным процессам, используемым для получения таких последовательностей ДНК, векторов экспрессии, систем культур хозяина и конечных продуктов и их производных, а также к конкретным и связанным с ними условиям. Настоящее изобретение частично вытекает из открытия последовательности ДНК и установленной аминокислотной последовательности, кодирующей иммунный интерферон человека. Кроме того, настоящее изобретение предоставляет информацию о последовательности 3"- и 5" - боковых последовательностей гена иммунного интерферона человека, что облегчает связывание его in vitro в векторы экспрессии. В частности, установлен 5"-ДНК сегмент, кодирующий предлагаемый эндогенный сигнальный полипептид, который непосредственно предшествует аминокислотной последовательности предполагаемого зрелого иммунного интерферона человека. Эти открытия облегчает разработку средств и способов получения с помощью рекомбинантной технологии ДНК достаточного количества иммунного интерферона человека, что обеспечило, в свою очередь, возможность определения его биохимических свойств и биоактивности. Публикации и другие материалы, использованные для освещения предпосылок изобретения, а также в ряде случаев для освещения дополнительных подробностей, касающихся его применения, включены посредством ссылок, для удобства пронумерованы в нижеследующем тексте и соответствующим образом расположены в прилагаемом списке библиографии. Предпосылки изобретения

A. Иммунный интерферон человека

Интерфероны человека можно классифицировать на три группы в зависимости от различной антигенности и биологических и биохимических свойств. Первую группу составляет семейство лейкоцитарных интерферонов ( -интерферон, Le IF или IFN-), которые обычно вырабатываются, в основном, соответствующими клетками крови человека под действием вирусов. Эти интерфероны были получены микробиологическим способом и была обнаружена их биологическая активность (1, 2, 3). Их биологические свойства определили их использование в клиниках в качестве терапевтических агентов при лечении вирусных инфекций и злокачественных состояний (4). Во второй группе находится фибробластный интерферон человека (- интерферон, FIF или IFN-), вырабатываемый обычно фибробластами под действием вирусов, который также был получен микробиологическим способом, и было обнаружено, что он демонстрирует широкий спектр биологических активностей (5). Клинические испытания также указывают на его потенциальную терапевтическую ценность. Лейкоцитарные и фибробластные интерфероны имеют очень заметное сходство в их биологических свойствах, несмотря на тот факт, что степень гомологии на аминокислотном уровне относительно низка. Кроме того, обе группы интерферонов содержат от 165 до 166 аминокислот и являются кислотными стабильными белками. Иммунный интерферон человека (- -интерферон, IIF или IFN-), который составляет предмет настоящего изобретения в противоположность - и - интерферонам, pH 2 лабилен, его получают главным образом митогенной индукцией лимфоцитов и он также совершенно отличен по антигенным свойствам. До недавнего времени иммунный интерферон человека можно быть получать лишь в очень незначительных количествах, что, естественно, затрудняло его характеристику. Недавно было сообщено о гораздо более высокой, но все еще частичной очистке иммунного интерферона человека (6). Как сообщалось, это соединение было получено из культур лимфоцитов, стимулированных сочетанием фитогемагглютинина и сложного эфира форбола, и было очищено при помощи последовательных хроматографических разделений. В результате этой процедуры получили продукт с молекулярной массой 58000. Иммунный интерферон человека получали в очень малых количествах трансляций мРНК в осциты, проявляющие характеристики интерферонной активности иммунного интерферона человека, причем выражалась надежда, что кДНК иммунного интерферона можно будет синтезировать и клонировать (7). Полученное до сих пор количество иммунного интерферона явно недостаточно для проведения не вызывающих сомнений экспериментов по характеристике и определению биологических свойств очищенной компоненты. Однако при исследованиях in vitro, проведенных с неочищенными препаратами, также как и in vivo - экспериментах с препаратами - интерферона крыс, предполагалось, что основной функцией иммунного интерферона может быть функция иммунорегулирующего агента (8 и 9). Иммунный интерферон обладает не только противовирусной и противоклеточной активностью, общей для всех интерферонов человека, но и потенцирующим действием на эти активности - и -интерферонов (10). Кроме того, антипролиферативное действие -интерферона на опухолевые клетки in vitro, как сообщается, приблизительно в 10-100 раз выше нежели действие других классов интерферонов (8, 11, 12). Этот результат вместе с его выраженной иммунорегуляторной ролью (8 и 9) предлагает гораздо более выраженную противоопухолевую способность для IFN-, чем для FN- и IFN- . Действительно в экспериментах in vivo с мышами и крысами IFN- препараты демонстрируют заметное превосходство по сравнению со стимулированными против вируса интерферонами в плане противоопухолевой активности против остеогенной саркомы (13). Все эти исследования до настоящего изобретения приходилось выполнять на существенно загрязненных препаратах из-за их чрезвычайно малой доступности. Однако они однозначно подтверждали очень важные биологические функции иммунного интерферона. Иммунный интерферон обладает не только основной противовирусной активностью, но также, вероятно, сильной иммунорегуляторной и противоопухолевой активностью, что явно определяет его как потенциально многообещающий клинический объект. Было явно, что применение технологии рекомбинантной ДНК должно быть наиболее эффективным путем получения необходимых больших количеств иммунного интерферона человека. Независимо от того, будут ли полученные таким образом вещества включать гликозилирование, которое рассматривают как характеристику природного, полученного от человека материала, они будут, по-видимому, демонстрировать биоактивность, определяющих их клиническое применение при лечении широкого ряда вирусных заболеваний, новообразований и состояний с подавленным иммунитетом. B. Технология рекомбинантной ДНК

Технология рекомбинантной ДНК достигла зрелости. Молекулярные биологи способны достаточно легко рекомбинировать различные последовательности ДНК, создавая новые виды ДНК, способные продуцировать значительные количества экзогенных белковых продуктов в трансформированных микробах. В основном средства и способы для in vitro связывания различных фрагментов ДНК с тупыми или "липкими" концами разработаны, с их помощью получают потенциальные векторы экспрессии, пригодные для трансформации конкретных микроорганизмов, за счет чего регулируют направленный синтез нужных экзогенных продуктов. Однако для отдельных продуктов этот путь остается достаточно трудным, и наука не достигла еще той стадии, на которой можно гарантировать успех. Плазмида, нехромосомная петля двунитевой ДНК, найденная в бактериях и других микробах, и часто в виде множества копий на клетку остается основным элементом рекомбинантной ДНК технологии. В информацию, закодированную в ДНК плазмиды, включена информация, необходимая для репродуцирования плазмиды в дочерних клетках (то есть, источник репликации) и обычно одна или более фенотипических характеристик селекции, таких как устойчивость к антибиотикам для бактерий, которая позволяет клонам клетки хозяина, содержащим интересующую плазмиду, быть узнанными и предпочтительно расти на селективной среде. Польза плазмид состоит в том факте, что их можно специфически расщеплять той или другой рестикционной эндонуклеазой или "рестрикционным ферментом", каждый из которых узнает различные участки ДНК плазмиды. После этого гетерологичные гены или генные фрагменты можно включать в плазмиду путем присоединения концами к участку расщепления или к реконструированным концам, прилежащим к участку расщепления. Так получают так называемые репликабельные векторы экспрессии. Рекомбинацию ДНК осуществляют вне клетки, однако получаемый "рекомбинантный" репликабельный вектор экспрессии или плазмиду можно ввести в клетки способом, известным, как трансформация, с получением больших количеств рекомбинантных векторов в результате роста трансформанта. Более того, если ген соответствующим образом ориентирован по отношению к участку плазмиды, который управляет транскрипцией и трансляцией кодирующей ДНК, полученный вектор экспрессии можно использовать для реального получения полипептидной последовательности, кодируемой встроенным геном, т.е. для процесса, который носит название экспрессии. Экспрессию инициируют в области, известной как промотор, который распознается и связывается РНК полимеразой. На транскрипционной фазе экспрессии ДНК раскручивается, открывая его как химическую матрицу для инициированного синтеза информационной РНК с последовательности ДНК. Информационная РНК, в свою очередь, транслируется в полипептид с последовательностью аминокислот, закодированной мРНК. Каждая аминокислота закодирована нуклеотидным триплетом или "кодоном", которые все вместе составляют "структурный ген", то есть ту часть, которая кодирует аминокислотную последовательность экспрессированного полипептидного продукта. Трансляции инициируется "старт" - сигналом (обычно ATG, который в полученной информационной РНК становится AUG). Так называемые "стоп" - кодоны определяют конец трансляции и соответственно присоединения следующих аминокислотных единиц. Целевой продукт можно получить, лизируя в случае необходимости клетку хозяина и отделяя продукт путем соответствующих методов очистки от остальных белков. На практике применение технологии рекомбинантной ДНК может обеспечить экспрессию полностью гетерологичных полипептидов (так называемая прямая экспрессия) или в другом варианте - гетерологичных полипептидов, присоединенных к участку аминокислотной последовательности гомологичного полипептида. В последнем случае целевой биоактивный продукт иногда остается неактивным в слитом гомологично-гетерологичном полипептиде до тех пор, пока он не будет отщеплен во внеклеточное окружение (см. опубликованный патент Великобритании N 2007676A и American Scientist 68, 664 (1980). C. Технология клеточной культуры. Искусство культур клеток или тканей для изучения генетики и физиологии клеток хорошо разработано. Известны устройства и способы поддержания перманентных линий клеток, полученных последовательной серией переносов из изомированных нормальных клеток. Для применения в исследованиях такие клеточные линии поддерживают на твердых подложках в жидкой среде или выращивают в суспензии, содержащей поддерживающие питательные вещества. Получение более крупных партий препаратов сводится лишь к механическим проблемам. Более подробное описание предпосылок изобретения можно найти в Microbiology and Edition, Harpes and Row Reblishers, Inc., Hagerstown, Maryland (1973), особенно на стр. 1122, и далее Scientific American 245, 66 и далее (1981), каждая из которых включена здесь в качестве ссылки. Настоящее изобретение основано на открытии, что технологию рекомбинантной ДНК можно с успехом использовать для получения иммунного интерферона человека, предпочтительно в непосредственной форме и в количествах, достаточных для инициирования и проведения тестов на животных и в клиниках, что необходимо перед выходом на рынок. Этот продукт пригоден для использования во всех его формах для профилактики и лечения вирусных инфекций, злокачественных новообразований и состояний с подавленной или дефектной иммунной системой. Его варианты включают различные олигомерные формы, которые могут включать гликозилирование. Этот продукт получают в перестроенных генетически трансформированных микроорганизмах или в трансформированных системах клеточных культур. В используемом здесь контексте термин "клетка-трансформант" относится к клетке, в которую ведена ДНК, причем указанная ДНК является продуктом экзогенной ДНК-рекомбинации, и к потомству любой такой клетки, которое сохраняет введенную таким путем ДНК. Так, теперь стало возможно получать и выделять иммунный интерферон человека более эффективно, чем было возможно ранее. Одним из существенных факторов настоящего изобретения в его наиболее предпочтительном варианте является осуществление возможности генетически направить микроорганизм или клеточную культуру на продуцирование иммунного интерферона человека в достаточных для выделения количествах, секретированных клетках хозяина в зрелой форме. Настоящее изобретение включает полученный таким образом иммунный интерферон человека, средства и способы его получения. Далее настоящее изобретение направлено на способные к репликации векторы экспрессии ДНК, хранящие последовательности генов, кодирующих иммунный интерферон человека в доступной для экспрессии форме. Настоящее изобретение направлено также на штаммы микроорганизмов или клеточные культуры, трансформированные векторами экспрессии, описанными ранее, и на микробные или клеточные культуры таких трансформированных штаммов или культур, способные продуцировать иммунный интерферон человека. Еще в одном аспекте настоящее изобретение направлено на различные процессы, пригодные для получения указанных последовательностей гена иммунного интерферона, векторов экспрессии ДНК, штаммов микроорганизмов и клеточных культур и на их конкретные варианты. Кроме того, настоящее изобретение направлено на получение ферментационных культур указанных микроорганизмов и клеточных культур. Настоящее изобретение направлено также на получение иммунного интерферона человека как продукта прямой экспрессии секретированного клетками хозяина в зрелой форме. Это достижение может использовать ген, кодирующий последовательность зрелого иммунного интерферона человека, плюс 5"-фланкирующую ДНК, кодирующую сигнальный полипептид. Считают, что сигнальный полипептид служит для транспорта молекулы к стенке клетки организма хозяина, где он отщепляется во время процесса секреции зрелого человека. Этот вариант делает возможным выделение и очистку целевого зрелого иммунного интерферона, не обращаясь к включению процедуры, предназначенной для удаления примесей внутриклеточного белка хозяина или клеточных осколков. Встречающееся в тексте выражение "зрелый иммунный интерферон человека" означает продукт микробной или клеточной культуры иммунного интерферона человека, не содержащий сигнального пептида или последовательности препептида, который обязательно сопровождает трансляцию мРНК иммунного интерферона человека. Первый рекомбинантный иммунный интерферон человека, полученный в соответствии с настоящим изобретением, имеет метионин в качестве своей первой аминокислоты (представлен в результате включения кодона стартового сигнала ATG перед структурным геном) или в том случае, если метионин внутри - или внеклеточно отщеплен, имеет в качестве нормальной первой аминокислоты цистеин. Зрелый иммунный интерферон человека можно также получить в виде конъюгата с белком, отличным от обычного сигнального полипептида, причем конъюгата, который может быть специфически расщеплен внутри или вне клетки (см. публикацию патента Великобритании N 2007676A). И, наконец, зрелый иммунный интерферон человека можно получить прямой экспрессией без необходимости отщепления каких-либо посторонних излишних полипептидов. Это особенно важно в тех случаях, когда данный хозяин не способен удалять или удаляет недостаточно эффективно сигнальный пептид, а вектор экспрессии предназначен экспрессировать зрелый интерферон человека вместе с его сигнальным пептидом. Полученный таким образом зрелый иммунный интерферон человека выделяют и очищают до уровня, удовлетворяющего требованиям, необходимым для применения при лечении вирусных заболеваний, злокачественных новообразований и состояний с подавленным или недостаточным иммунитетом. Иммунный интерферон человека был получен следующим образом. 1. Ткани человека, например, ткань селезенки человека или периферические лимфоциты крови культивировали с митогенами для стимулирования продукции иммунного интерферона. 2. Осадок клеток из такой клеточной культуры экстрагировали в присутствии ингибитора рибонуклеазы с целью всей цитоплазмической РНК. 3. На олиго-dТ колонке выделили тотальную информационную РНК (мРНК) в полиаденилированной форме. Эту РНК расфракционировали по размерам, используя градиент плотности сахарозы и гель электрофорез в присутствии кислоты-мочевины. 4. Соответствующую РНК (от 12S до 18S) превратили в соответствующую однонитевую комплементарную ДНК (мДНК), из которой получили двунитевую кДНК. После поли - dC удлинения ее включили в вектор так, чтобы плазмида имела один или более фенотипических маркеров. 5. Полученные таким образом векторы использовали для трансформации бактериальных клеток с получением библиотеки колоний. Меченные радиоизотопами кДНК, полученные как из индуцированных, так и из неиндуцированных РНК, выделенных как описано ранее, использовали для раздельного определения дубликатных библиотек колоний. Затем избыток кДНК удаляли и колонии экспонировали на рентгеновской пленке для идентификации индуцированных клонов кДНК. 6. Из индуцированных клонов кДНК выделили соответствующую плазмидную ДНК и определили в ней последовательность оснований. 7. Секвенированную ДНК подготовили in vitro для включения в соответствующий вектор экспрессии, который использовали для трансформации подходящей клетки хозяина, который, в свою очередь, дали возможность расти в культуре и экспрессировать целевой иммунный интерферон человека. 8. В некоторых системах клеток хозяина, будучи включена в вектор экспрессии так, чтобы быть экспрессированной вместе с сигнальным пептидом, зрелая форма иммунного интерферона человека секретируется в среду клеточной культуры, что облегчает выделение и методы очистки. Описание предпочтительных вариантов изобретения. A. Система клеточных культур/векторы клеточных культур. Размножение клеток позвоночных в культуре (культура ткани) стало обычной процедурой за последние годы (см. Tissue Culture Academic Riess Kruse and Paterson ends, 1973). В данном случае использовали COS - 7 линию фибробластов почки обезьян в качестве хозяина для получения иммунного интерферона (25a). Однако подробно описанные здесь опыты можно проводить на любой линии клеток, которая способна к репликации и экспрессии совместимого вектора, например, W138, BHK, 3T3, CHO, VERO и линий клеток HeLa. Кроме того, необходимо, чтобы вектор экспрессии имел сайт инициации репликации и промотор, расположенный перед геном, подлежащим экспрессии, вкупе с необходимыми также участками связывания рибосомы, участками сплайсинга РНК, участками полиаденилирования и транскрипционными терминаторами. Хотя здесь были использованы эти важные элементы SV40, следует иметь в виду, что изобретение, хотя оно и описано здесь с точки зрения его предпочтительного варианта, не следует рассматривать как ограниченное лишь этими последовательностями. Так, например, могут быть использованы источники репликации других вирусных (например, Polyoma, Adeno, VSV, BPV и т.д.) векторов, а также клеточные источники репликации ДНК, которые могут функционировать в неинтегрированном состоянии. B. Экспрессия в культуре клеток млекопитающих. Стратегия синтеза иммунного интерферона в культуре клеток млекопитающих основана на разработке вектора, способного как к автономной репликации, так и к экспрессии чужого гена под контролем гетерологичного транскрипционного фрагмента. Репликация этого вектора в культуре ткани обеспечивалась за счет стимуляции инициатора репликации ДНК (происходящего из вируса SV 40) и стимуляции вспомогательной функции (T антиген) путем введения вектора в линию клеток, эндогенно экспрессирующих этот антиген (23 и 29). Поздний промотор вируса SV 40 предшествует структурному гену интерферона и обеспечивает транскрипцию гена. Вектор, который использовали для получения экспрессии , состоял из последовательностей pBR 322, которая обеспечивает маркер, пригодный для отбора в E. coli (устойчивой к ампициллину), а также инициатор репликации ДНК. Эти последовательности были получены из плазмиды pML - 1 (28) и представляют область, содержащую ECo RI и Bam HI рестрикционные сайты. SV 40 инициатор получен в составе фрагмента PVu II - Hind III размером 342 п.о., включающего эту область (30 и 31) (причем оба конца превращены в концы Eco RI). Эти последовательности, кроме того, что содержат вирусный инициатор репликации ДНК, кодируют промотор как для ранней, так и для поздней транскрипционной единицы, ориентация участка инициации из SV - 40 была такова, что промотор для поздней единицы транскрипции был расположен проксимально по соотношению к гену, кодирующему интерферон. На фиг. 1 изображено градиентное сахарозное центрифугирование поли(А) + РНК стимулированных лимфоцитов периферической крови. Наблюдается два максимума активности интерферона (показано заштрихованными прямоугольниками) с размерами 12S и 16S. Расположение маркеров рРНК (центрифугированных независимо) помечено над контуром поглощения. На фиг. 2 изображен электрофорез поли (A) + РНК стимулированных PBL на кислота-мочевина-агарозе. Наблюдается только один максимум активности, который мигрирует совместно с 18S РНК. Положение рибосомных маркеров РНК, которые были подвергнуты электрофорезу на прилежащей дорожке и проявлены окрашиванием этидиум бромидом, помечено выше контура активности. На фиг. 3 изображены картины гибридизации 96 колонии с индуцированными и неиндуцированными 32 P меченными кДНК пробами. 96 индивидуальных трансформантов выращивали на пластине для микротитрования, реплика была помещена на две нитроцеллюлозные мембраны, а затем фильтры гибридизовали с 32 P-кДНК образцами, полученными либо из индуцированных мРНК (вверху), либо из мРНК, выделенных из неиндуцированных культур pBL (неиндуцированные, внизу). Фильтры промывали для удаления негибридизованных РНК, а затем экспонировали на пленке для рентгеновских лучей. Эта серия фильтров представляет 86 таких серий (8300 независимых колоний). Примером индуцированного клона является помеченный H12. Фиг. 4 является рестрикционной картой вставки кДНК клона 69. Вставка кДНК связана с сайтами PstI (точки с обоих концов) и олиго-dC-dG "хвостами" (прямые линии). Число и размеры фрагментов, полученных расщеплением рестрикционными нуклеазами, были установлены с помощью электрофореза 6% акриламидном геле. Положения участков были подтверждены секвенированием (представлено на фиг. 5). Кодирующий участок самой большой открытой рамки считывания обведен, заштрихованный участок представляет 20 остатков последовательности сигнального пептида, тогда как участок с точечным пунктиром представляет последовательность зрелого IEN (46 аминокислот); 5" - конец мРНК находится слева, а 3" конец находится справа. На фиг. 5 представлена нуклеотидная последовательность вставки кДНК плазмиды р69. Представлена также "выведенная" последовательность аминокислот наиболее длинного открытого участка считывания. Предполагаемая сигнальная последовательность представлена остатками, помеченными от S1 до S20. На фиг. 6 приведена схема плазмиды pSV69, использованной для экспрессии IFN- в клетках обезьяны. Фиг. 7 изображает Саузерн-гибридизацию 8 различных переваренных Eco RI человеческих геномных ДНК, гибридизованных с 32 P-меченным DdeI- фрагментом 600 п.о. из кДНК-вставки p69. Два Eco RI-фрагмента явно гибридизованы с зондом в каждом образце ДНК. На фиг. 8 представлена Саузерн-гибридизация человеческой геномной ДНК, переваренной 6 различными рестрикционными эндонуклеазами, гибридизованной с 32 P-меченным зондом из p69. А. Источник IFN- мРНК

Лимфоциты периферической крови (PBL) были получены от доноров (людей) с помощью лейкофореза. Далее PBL были очищены градиентным центрифугированием в смеси фиколл-гепарин, а затем их культивировали при концентрации 510 6 кл/мл в RPMI 164 с 1 % L-глутамина, 25 мМ HEPS и 1 % раствора пенициллин-стрептомицин (Gibco Jrand gsland, Ny). Эти клетки индуцировали для получения IFN- митогенным стафилококковым энтеротоксином B (N мкг/мл) и культивировали в течение 34-48 ч при 37 o C в 5 % CO. К культуре PBL добавили дезацетилтимозин -- (0,1 мкг/мл) для повышения относительного выхода IFN- активности. В. Выделение информационной РНК. Тотальную РНК из культур PBL экстрагировали, в основном, в соответствии с сообщением Bergen, S.L. et al. (33). Клетки выделяли центрифугированием, а затем повторно суспендировали в 10 мМ NaCl, 10мМ TrCS-HCl (pH 7,5), 1,5мМ MgCl 2 и 10 мМ рибонуклеозид-ванадильного комплекса. Клетки лизировали, добавляя NP-40 (конечная концентрация 1%), и ядра выделяли центрифугированием. Надосадочная жидкость содержала тотальную РНК, которую очистили далее многократными экстракциями фенолом и хлороформом. Водную фазу довели до 0,2М NaCl, а затем все РНК осадили, добавив два объема этанола. РНК неиндуцированных (нестимулированных) культур выделили таким же способом. Для очистки мРНК от остальных видов РНК использовали олиго-dТ целлюлозную хроматографию (34). Типичные выходы из 1-2 л культивированных PBL составляли 5-10 мг тотальной РНК и 50-200 мкг поли(А) + PHK. C.Фракционирование мРНК по размерам. Для фракционирования препаратов мРНК использовали два способа. Эти способы использовали независимо (а не вместе) и каждый из них приводил к значительному обогащению IFN - мРНК. Для фракционирования мРНК использовали сахарозное градиентное центрифугирование в присутствии денатуранта формамида. Градиенты от 5 до 25 % сахарозы в 70 %-ном формамиде (32) центрифугировали при 154000g в течение 19 ч при 20 o C. Последовательные фракции (0,5 мл) выделяли затем с верхней части градиента, осаждали этанолом, а затем аликвоты вводили в социты Xenopus laevis для трансляции мРНК (35). Спустя 24 ч при комнатной температуре инкубационную среду стандартным методом ингибирования цитопатического эффекта исследовали на противовирусную активность, используя при этом Vesicular Stomatitis вирус (штамм Indiana) или вирус Eucepholomycarditis на клетках WISH (амнион человека) по описанию Стюарта (36), за исключением того, что образцы инкубировали с клетками в течение 24 ч (вместо 4) перед заражением вирусом. Соответственно наблюдали два пика активности для РНК, фракционированных в сахарозном градиенте (фиг. 1). Один пик седиментировал с рассчитанным размером 12S и содержал 100-400 ед/мл антивирусной активности (по сравнению со стандартом IFN-) на мкг введенной РНК. Другой пик активности седиментировал с размером 16S и содержал около половины активности более медленно седиментированного пика. Каждый из этих пиков активности, по-видимому, связан с IFN- , так как для тех же фракций, исследовавшихся на линии бычьих клеток (MDBK), которые не защищены человеческим IFN- , не наблюдалось никакой активности. Как активность IFN- , так и активность IFN- , можно легко определить, исследуя МДВК (5). Фракционирование мРНК (260 мкг) проводили также электрофорезом через кислотно-мочевинные агарозные гели. Вязкий агарозный гель (37 и 38) состоял из 1,75 % агарозы. О,025 М цитрата натрия, pH 3,8 и 6М мочевины. Электрофорез проводили в течение 7 ч при 25 мА и 4 o C. Затем гель разрезали лезвием бритвы. Отдельные ломтики расплавляли при 70 o C, после чего дважды экстрагировали фенолом и один раз хлороформом. Фракции осаждали этанолом, последовательно анализировали на предмет содержания мРНК IFN- введением в социты Xenopus laevis и затем проводили противовирусный анализ. Для фракционированных в геле образцов наблюдали только один пик активности (фиг. 2). Этот пик выходит вместе с 18S и имеет активность 600 ед/мл на микрограмм введенной РНК. Эта активность также, по-видимому, специфична для IFN- , так как не защищает клетки МДВК. Расхождение размеров, наблюдавшееся на сахарозных градиентах (12S и 16S) и кислотно-мочевинных гелях (18S) можно объяснить тем, что эти независимые методы фракционирования проводились в неодинаковых условиях полного денатурирования. Д. Получение библиотеки колоний,

Содержащих последовательности IFN-. 3 мг фракционированных в геле мРНК использовали для получения двунитевой кДНК по стандартным методикам (26 и 39)); кДНК фракционировали по размерам на 6% полиакриламидном геле. Фракции двух размеров электроэлюировали, 800 - 1500 п.о. (138 ng) и > 1500 п.о.(204 ng). Порции 35 ng каждого размера кДНК удлинили дезокси C-остатками, используя терминальную дезоксинуклеотидтрансферазу (40), и отжигали с 300 ng плазмиды pBK 322 (41), которая была аналогично сшита с дезокси-остатками в сайте Pst I(40). Каждую ренатурированную смесь трансформировали затем в E.coli К12 штамм 294. Получили приблизительно 8000 трансформантов с кДНК 800-1500 п.о. и 400 трансформантов кДНК > 1500 п.о. Е. Выделение из библиотеки колоний,

Индуцированных кДНК. Полученные колонии отдельно инокулировали в лунки пластинок для микротитрования, содержащих LB (58) + 5 мгк/мл тетрациклина и хранившихся при - 20 o C после добавления ЖДМСО до 7 %. Две копии библиотеки колоний выращивали на нитроцеллюлозных фильтрах и ДНК из каждой колонии фиксировали на фильтре по методу Gruushtein - Hogness (42). 32 P - меченные кДНК зонды приготовили, используя гельфракционированные мРНК размером 18S из индуцированных и неиндуцированных культур РВL. В качестве праймеров использовали олиго-d Т 12-18; применялись условия реакции, описанные ранее (I). Фильтры, содержащие 8000 трансформантов с размером кДНК 600-1500 п.о. и 400 трансформантов с размером кДНК более 1500 п.о. гибридизовали с 2010 6 срм индуцированных 30 P -кДНК. Дублирующий набор фильтров гибридизовали с 2010 6 срм неиндуцированных 32 P- кДНК. Гибридизацию проводили в течение 16 ч, используя условия, описанные Fritsch et al (43). Фильтры тщательно промыли (43), а затем экспонировали на Кодаковской пленке XR-5 для рентгеновских лучей с помощью Du Pont Lighitning-Plus. интенсифицирующих экранов в течение 16-48 ч. Сравнивали картину гибридизации для каждой колонии с двумя пробами. Приблизительно 40 % колоний явно были гибридизованы с обоими зондами, тогда как приблизительно 50 % колоний не подверглись гибридизации ни с одним зондом (см. фиг. 3). 124 колонии были гибридизованы заметно с индивидуальным зондом, но недетектируемо или очень слабо - с неиндуцированным зондом. Эти колонии индивидуально инокулировали в лунки пластинок для микротитрования, вырастили и перенесли на нитроцеллюлозные фильтры, а затем гибридизовали с теми же двумя пробами, как описано выше. Плазмидная ДНК, выделенная из каждой из этих колоний быстрым способом (44), была также связана с нитроцеллюлозными фильтрами и гибридизована (45) со стимулированными зондами. ДНК из 22 колоний, гибридизовавшееся только с индукционными зондами, были названы "индуцированными" колониями. F. Характеристики индуцированных колоний. Плазмидную ДНК получили из 5 индуцированных колоний (46) и использовали для того, чтобы охарактеризовать кДНК вставки. Рестрикционное мечение пяти индуцированных плазмид (р67, р68, р69, р70 и р71) показало, что четыре из них имеют аналогичные рестрикционные карты. Эти четыре плазмиды (р67, р69, р71 и р72) имеют каждая четыре Dde участка, 2 Hinf 1 участка и один Rsa 1 участок во вставке кДНК. Пятая плазмида (р68) содержит обычный Dde 1 фрагмент и, по-видимому, является коротким кДНК-клоном, относящимся к остальным четырем. Гомологичность, предполагаемая на основании картрирования с помощью рестрикционных нуклеаз, была подтверждена гибридизацией. Приготовили 32 P-меченную ДНК пробу (47) из DdeI фрагмента размером 600 п.о. плазмиды р67 и использовали для гибридизации (42) с остальными индуцированными колониями. Все пять картрированных рестрикционных нуклеазой колоний перекрестно гибридизовались с этим зондом, как и 17 других колоний из 124, выбранных при скрининге. Длину вставки кДНК в каждой из этих перекрестно гибридизирующихся плазмид определяли по перевариванию PstI и с помощью гельэлектрофореза. Клон с самой длинной кДНК-вставкой, по-видимому, является клоном 69 с размером вставки 1200-1400 п.о. Эту ДНК использовали во всех дальнейших экспериментах, ее рестрикционная карта приведена на фиг. 4. Вставка кДНК в р69, как было показано, является IFN- кДНК по полученным в трех независимых системах экспрессии продуктам, проявлявшим противовирусную активность, как описано более подробно infra. G. Анализ последовательной вставки кДНК р69. Полная нуклеотидная последовательность плазмидной p69 кДНК-вставки была определена методом дидеоксинуклеотидного обрыва цепи (48) после субклонирования фрагментов в M 13 вектор m 7 (49) и химическим методом Максама и Гилберта (52). Наиболее длинная открытая рамка считывания кодирует белок из 166 аминокислот, представленный на фиг. 5. Первый остаток кодирует первый метиониновый кодон, включенный в 5"-конец кДНК. Первые 20 остатков у аминоконца, вероятно, служат сигнальной последовательностью для секреции остальных 146 аминокислот. Эту предполагаемую сигнальную последовательность с другими известными сигнальными последовательностями объединяют, например, размеры и гидрофобность. Кроме того, четыре аминокислоты, найденные у предполагаемой отщепляемой последовательности (ser-leu-glu-cys) были идентичны с четырьмя остатками, найденными в точке отщепления нескольких лейкоцитных интерферонов (LeIF B, C, D, F и H (2)). Закодированная зрелая аминокислотная последовательность из 146 аминокислот (именуемая в дальнейшем "рекомбинантный человеческий иммуноинтерферон") имеет молекулярную массу 17140. Имеются два потенциальных положения гликозилирования (50) в закодированной белковой последовательности, у аминокислот от 28 до 30 (asn-gly-thr) и аминокислот от 100 до 102 (asn-tyr-ser). Существование этих положений согласуется с наблюдавшимся гликозилированием человеческого IFN- (6 и 51). Кроме того, единственные два цистеиновых остатка (положения 1 и 3) стерически слишком близки, чтобы образовывать дисульфидный мостик, что согласуется с наблюдавшейся стабильностью IFN- в присутствии таких восстанавливающих агентов, как IFN- - меркаптоэтанол (51). Выведенная зрелая аминокислотная последовательность, в общем, является основной, имея в сумме 30 лизиновых, аргининовых и гистидиновых остатков и всего 19 остатков аспарагиновой и глутаминовой кислот. Структура мРНК IFN- , установленная из ДНК последовательности плазмиды р69, заметно отличается от IFN- (1,2) или IFN- (5) мРНК. Так, кодирующий участок IFN- короче, хотя 5" нетранслируемый и 3"-нетранслируемый участки гораздо длиннее, чем в IFN-FN- и IFN- . H. Структура кодирующей последовательности гена IFN- . Структура гена, кодирующего IFN- , анализировали гибридизацией. В этой процедуре (54) 5 мкг высокомолекулярной человеческой ДНК (полученной по методу 55) переваривают до завершения с различными рестрикционными эндонуклеазами, проводят электрофорез на 1,0 % агарозном геле (56) и переносят на нитроцеллюлозный фильтр (54). 32 P-меченную пробу ДНК приготавливают (47) из DdeI фрагмента размером 600 п.о. кДНК-вставки р69 и гибридизуют (43) с ДНК пятном на фильтре. 10 7 импульсов в минуту пробы гибридизовали в течение 16 ч, а затем промывали как описано (43). Восемь геномных ДНК образцов от различных доноров (людей) переваривали Eco RI и гибридизовали с р69 32 P-меченным зондом. Как представлено на фиг. 7, наблюдается два четких сигнала гибридизации с размерами 8,8 m.п.о. и 2,0 m.п.о., что установлено путем сравнения подвижностей с Hind III переваренной -ДНК. Это могло быть результатом наличия или двух генов IFN- , или одного гена, расщепленного по Eco RI сайту. Так как р69 кДНК не содержит Eco RI сайтов, для объяснения наличия его в гене придется допустить промежуточную последовательность (интрон) с внутренним участком Eco RI. Для того, чтобы сделать различие между этими двумя возможностями, провели еще одну гибридизацию саузерна с тем же зондом и пятью другими эндонуклеазными перевариваниями одной человеческой ДНК (фиг. 8). По два гибридизуемых фрагмента ДНК наблюдали для других эндонуклеазных перевариваний, PVUII - 6,7 т.п.о. и 4,0 и Hinc II (2,5 т.п.о. и 2,2 т.п.о.). Однако три остальные картины эндонуклеазного переваривания дают только один гибридизующийся ДНК-фрагмент: Hind III (9,0 т.п.о.), Bdl II (11,5 т.п.о.) и BamHI (9,5 т. п. о.) Два IFN- гена должны быть связаны необычно коротким расстоянием (менее 9,0 квр), чтобы оказаться в одном и том же Hihd III фрагменте. Этот результат предполагает, что только один гомологичный IFN- ген (в отличие от многих связанных с IFN- генов) присутствует в человеческой геномной ДНК и что этот ген разделен одним или более интронов, содержащих Eco RI, PVU II и Hind II сайты. Это предположение было подтверждено гибридизацией 32 P-меченного (47) фрагмента, полученного из 3"-нетранслируемого участка кДНК из р69 (130 п.о. Dde I фрагмент от 860 положения до 990 положения на фиг. 5) с Eco RI переваром человеческой геномной ДНК. Только 2,0 т.п.о. Eco RI фрагмент гибридизуется с этим зондом, указывая на то, что этот фрагмент содержит 3"-нетранслированные последовательности, тогда как 3,8 т.п.о. Eco RI фрагмент содержит 5"-последовательности. Структура гена IFN- (один ген по крайней мере с одним интроном) существенно отличается от IFN- (множество генов (2) без интронов (56)) или IFN- (один ген без интронов (57)). J. Конструирование вектора клеточной культуры pSV69. Фрагмент из 342 пар оснований Hind III- PVU III, включающий инициатор SV 40, превратили во фрагмент, связанный с Eco R I рестрикционным сайтом. Hind III сайт превратили добавлением синтетического олигомера (5d AGCTGAATTC) и PVU II сайт превратили сшиванием по тупому концу в Eco RI сайт, дополнив его с использованием полимеразы I (фрагмент Кленова). Полученный Eco RI фрагмент вставили в Eсо RI сайт pML - (28). Плазмиду с поздним промотором SV 40, ориентированным в сторону от amp R гена, далее модифицировали, удалив Eco R I - сайт, ближайший к amp R гену pML - 1 (27). Был выделен фрагмент размером 1023 пар оснований HpaI - BglII из клонированной HBV ДНК (60), и HpaI сайт вируса гепатита B (HBV) превратили в Eco RI сайт с синтетическим олигомером (5"dGGGAATTCGC). Этот Eco RI-Bgl II фрагмент непосредственно клонировали в Eco RI - BamH I сайты плазмиды, описанной ранее и несущей инициатор SV 40. В оставшийся Eco R I - сайт вставили кодирующую IFN- последовательность на Pst I фрагменте р69 из 1250 п.о. после конверсии PstI концов в Eco R I концы. Выделили те клоны, в которых поздний промотор SV 40 предшествовал гену IFN- . Полученная плазмида pSV69 (фиг. 6) была затем введена в клетки культур тканей (29), в частности COS-7 клетки, с использованием ДЕАЕ-декстранметодики (61), модифицированной таким образом, что трансфекцию в присутствии ДЕАЕ-декстрана проводили в течение 8 ч. Клеточную среду меняли каждые 2-3 дн. Ежедневно отбирали 200 мкл на интерфероновый биоанализ. Типичные выходы составили 50-100 ед/мл в образцах, проанализированных три или четыре дня спустя после трансфекции. Анализ показал, что продукт экспрессии не имеет cys-tyr-cys-N-концевой части рекомбинантного человеческого иммуноинтерферона (ср. фиг. 5), указывая на то, что явление отщепления сигнального пептида прошло по связи cys-GLN (аминокислоты 3 и 4 на фиг. 5) и что зрелый полипептит фактически состоит из 143 аминокислот (geз-cys-Tyr-cys-иммунный интерферон). J. Частичная очистка рекомбинантного человеческого geз-cys-Tyr-cys-иммунного интерферона. Для получения больших количеств человеческого интерферона IFN- , выделяемого обезьяньими клетками, свежие монослои COS-7 клеток в десяти 10 см пластинах были трансфецированы в общем 30 мкг рDL 1 3 в 110 мл ДЕАЕ-декстрана (200 мкг/мл ДЕАЕ декстран 500000 MW; 0,05 М трис pH 7,5 в ДМЕМ). Спустя 16 ч при 37 o C, пластины промыли дважды ДМЕМ. 15 мл свежей ДМЕМ с добавлением 10 % f.b.s., 2 мМ глутамина, 50 мкг/мл пенициллина G и 50 мг/мл стрептомицина добавили затем на каждую пластину. Среду заменили освобожденной от сыворотки ДМЕM. Свежую, свободную от сыворотки среду добавляли затем ежедневно. Собранную среду хранили при 4 o C до тех пор, пока не использовали для анализа, или связывали с CPG. Было обнаружено, что фракции, собранные спустя 3 и 4 дн после трансфекции, сохраняли практически всю активность. 0,5 г CPG (контролируемое пористое стекло Electonucleonics CPG 350 размер в мешках 120/200) добавляли к 100 мл клеточной надосадочной жидкости, и полученную смесь перемешивали в течение 3 ч при 4 o C. После недолгого центрирования в beuch top центрифуге осевшие шарики набили в колонку и тщательно промыли буфером 20 мМ NaPO 4 , 1M NaCl, 0,1 % -меркаптоэтанол, pH 7,2. Затем активность элюировали тем же самым буфером, содержащим 30 % этиленгликоля с последующим элюированием вышеуказанным буфером, содержащим 50 % этиленгликоль. Практически вся активность связана с CPG. 75 % элюированной активности нашли во фракциях, элюированных с 30 % этиленгликолем. Эти фракции собрали и разбавили 20 мМ NaPO 4 1M NaCl, pH 7,2 до финальной концентрации 10 % этиленгликоля и непосредственно вводили в 10 мл колонку Con A Sepharose (Pharmacia). После тщательной промывки 20 мМ NaPO 4 - 1M NaCl, pH 7,2 активности элюировали 20 мМ NaPO 4 - 1M NaCl - 0,2 M -метил-Д-маннозидом. Существенное количество активности (55 %) не связано с этим лектином, 45 % активности элюировано -метил-Д-маннозидом. К. Фармацевтические композиции. Соединения настоящего изобретения можно включить в соответствии с известными способами в фармацевтически приемлемые композиции, в которых человеческий иммунный интерферон соединяют в смеси с фармацевтически приемлемым носителем. Подходящие носители и их композиции описаны в Pemington"s Pharmaceutical Science, которая включена в виде ссылки. Такие композиции должны содержать эффективное количество белка интерферона в соответствии с настоящим изобретением вместе с подходящим количеством носителя для получения фармацевтически приемлемой композиции, подходящей для эффективного введения больному. Парэнтеральный прием. Человеческий иммунный интерферон настоящего изобретения можно парэнтерально вводить пациенту, для которого необходимо противоопухолевое или противовирусное лечение, а также тем, кто находится в иммуноподавленном состоянии. Дозы и частота приема могут быть аналогичными тем, которые обычно используют в клинических исследованиях на других человеческих интерферонах; то есть около (1-10)10 6 единиц ежедневно, а в случае материалов с чистотой выше 1 %, по-видимому, вплоть 5010 6 ед. чистого интерферона, пригодного для парэнтерального введения. Ампулы предпочтительно хранить на холоде (-20 o C) перед употреблением. Данные биоисследований. 1. Характеристика противовирусной активности. Для нейтрализации антител образцы разбавляли, в случае необходимости, до концентрации 500 - 1000 ед/мл, добавляя PBS - BSA. Равные объемы образца инкубировали в течение 2-12 ч при 4 o C с рядом разбавлений кроличьих античеловеческих лейкоцитов, фибробластов или антисыворотки иммунного интерферона. Анти-IFN- и получили из национального института аллергических и инфекционных заболеваний. Анти-IFN- приготовили, используя аустентичный IFN- (5-20 % чистоты), очищенный из стимулированных лимфоцитов периферической крови. Образцы цетрифугировали в течение 3 мин при 1200 xg за 3 мин перед исследованием. Для проверки pH 2 - стабильности образцы доводили до pH 2, добавляя 1 н. HCl, инкубировали в течение 2-12 ч при 4 o C и нейтрализовали добавлением 1 н. NaOH перед исследованием. Для тестирования натрийдодецилсульфатной (SDS) чувствительности образцы инкубировали с равным объемом 0,2 % SDS в течение 2-12 ч при 4 o C непосредственно перед анализом. Характеристики IFN- полученного в COS - 7 клетках даны в таблице. Источники информации. 1. Goeddel et al., Nature 287, 411 (1930). 2. Goeddel et al., Nature 290. 20(1981). 3. Yelverton et al., Nucleic Aceds Research 9. 731 (1981). 4. Gutterman et al., Annals of Int. Med. 93, 399 (1980). 5. Goeddel et al., Nucleic Acids Reseach 8, 4057 (1980). 6. Yip et al., Proc. Natl. Acad. Sci. (USA) 78, 1601 (1981). 7. Taniguchi et al., Proc. Natl. Acad. Sci. (USA) 78, 3469 (1981). 8. Bloom, Nature 289, 593 (1980). 9. Sonnenfeld et al., Cellular Immunol. 40, 285 (1978). 10. Fleishmann et al., Infection and Immunity 26, 248 (1979). 11. Blalock et al., Cellular Immunology 49, 390 (1980). 12. Rudin et al., Proc. Natl. Acad. Sci. (USA) 77, 5928 (1980). 13. Crane et al., J. Natl. Cancer Inst. 61, 871 (1978). 14. Stinchcomb et al., Nature 282, 39 (1979). 15. Kingsman et al., Gene 7, 141 (1979). 16. Tschumper el al.,. Gene 10, 157 (1980). 17. Mortimer et al., Microbiological Reviews 44, 519 (198). 18. Miozzari et al., Journal of Bacteriology 134, 48 (1978). 19. Jones, Genetics 85, 23 (1977). 20. Hitzeman, et al., J. Biol. Chem. 255, 12073 (1980). 21. Hess et al., J. Adv. Enzyme Regul. 7, 149 (1968). 22. Holland et al.. Biochemistry 17, 4900 (1978). 23. Bostian et al., Proc. Natl. Acad. Sci. (USA) 77, 4504 (1980). 24. The Molecular Biology of Yeast (Aug 11-18, 1981), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. 25. Chambon, Ann. Rev. Biochemistry, 44, 613 (1975). 25a. Gluzman, Cell 23. 175 (1981). 26. Goeddel et al., Nature 281, 544 (1979). 27. Itakura et al., Science 198, 1056 (1977). 28. Lusky et al., Nature 293, 79 (1981). 29. Gluzman et al. , Cold Spring Harbor Symp. Quant. Biol. 44, 293 (1980). 30. Fiers et al., Nature 273, 113 (1978). 31. Reddy et al., Science 200, 494 (1978). 32. Boedtker et al. , Prog. in Nucleic Acids Res. Mol. Biol. 19, 253 (1976). 33. Berger et al., Biochemistry 18, 5143 (1979). 34. Aviv et al., Proc. Natl. Acad. Sci. USA 69, 1408 (1972). 35. Gurdon et al., J. Molec. Biol. 80, 539 (1975). 36. Stewart, The Interferon System. Springer, New fork, p. 13-26 (1979). 37. Lehrach et al., Biochemistry 16, 4743 (1977). 38. Lynch el al., Virology 98, 251 (1979). 39. Wickens et al., J. Biol. Chem. 253, 2483 (1978). 40. Chang et al., Nature 275, 617 (1978). 41. Bolivar et al., Gene 2, 95 (1977). 42. Grunstein et al., Proc. Natl. Acad. Sci. U.S.A. 72, 3961 (1975). 43. Fritsch et al., Cell 19, 959 (1980). 44. Birnboim et al., Nucleic Acids Res. 7, 1513 (1979). 45. Kafatos et al., Nucleic Acids Res. 7, 1541 (1979). 46. Clewel et al., Biochemistry 9, 4428 (1970). 47. Taylor et al., Biochim. Biophys. Acta 442, 324 (1976). 48. Smith, Methods Enzymol. 61, 560 (1980). 49. Messing et al., Nucleic Acids Res. 9, 309 (1981). 50. Winzler, Hormonal Proteins and Peptides (ed. Li) Academic Press, New York, p. 1 (1973). 51. Mathan et al., Nature 292, 842 (1981). 52. Maxam et al., Methods in Enzymol. 65, 490 (1980). 53. Crea et al., Proc. Natl. Acad. Sci. (USA) 75, 5765 (1978). 54. Southern, J. Molec. Biol. 98, 503 (1975). 55. Blin et al., Nucleic Acids Res. 3, 2303 (1976). 56. Lawn et al., Science 212, 1159 (1981). 57. Lawn et al., Nucleic Acids Res. 9, 1045 (1981). 58. Miller, Experiments in Molecular Genetics, p. 431-3, Cold Spring Harbor Lab., Cold Spring Harbor, New York (1972). 59. Beggs, Nature 275, 104 (1978). 60. Valenzuela et al., Animal Virus Genetics (ed. Fields, Jaenisch and Fox) p. 57, Academic Press, New York (1980). 61. McCuthan et al., J. Natl. Cancer Inst. 41, 351 (1968).

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения человеческого иммунного интерферона, предусматривающий культивирование линии клеток животных, выделение и очистку целевого продукта, отличающийся тем, что культивируют линию клеток COS-7, трансформированных рекомбинантной плазмидной ДНК pSVj69, и выделяют дез-Cys-Tyr-Cys -интерферон.