Как известно, физика изучает все законы природы: начиная от простейших и заканчивая наиболее общими принципами естествознания. Даже в тех областях, где, казалось бы, физика не способна разобраться, все равно она играет первоочередную роль, и каждый малейший закон, каждый принцип — ничто не ускользает от нее.

Вконтакте

Именно физика является основой основ, именно эта лежит в истоках всех наук.

Физика изучает взаимодействие всех тел, как парадоксально маленьких, так и невероятно больших. Современная физика активно изучает не просто маленькие, а гипотетические тела, и даже это проливает свет на суть мироздания.

Физика поделена на разделы, это упрощает не только саму науку и понимание ее, но и методологию изучения. Механика занимается движением тел и взаимодействием движущихся тел, термодинамика — тепловыми процессами, электродинамика — электрическими.

Почему деформацию должна изучать механика

Говоря о сжатиях или растяжениях, следует задать себе вопрос: какой раздел физики должен изучать этот процесс? При сильных искажениях может выделяться тепло, быть может, этими процессами должна заниматься термодинамика? Иногда при сжатии жидкостей, она начинает кипеть, а при сжатии газов — образуются жидкости? Так что же, деформацию должна познавать гидродинамика? Или молекулярно-кинетическая теория?

Всё зависит от силы деформации, от ее степени. Если деформируемая среда (материал, который сжимают или растягивают) позволяет, а сжатие невелико, есть смысл рассматривать этот процесс как движение одних точек тела относительно других.

А раз вопрос касается сугубо , значит, заниматься этим будет механика.

Закон Гука и условие его выполнения

В 1660 году известный английский ученый Роберт Гук открыл явление, при помощи которого можно механически описать процесс деформаций.

Для того чтобы понимать при каких условиях выполняется закон Гука, ограничимся двумя параметрами:

  • среда;
  • сила.

Есть такие среды (например, газы, жидкости, особо вязкие жидкости, близкие к твердым состояниям или, наоборот, очень текучие жидкости) для которых описать процесс механически никак не получится. И наоборот, существуют такие среды, в которых при достаточно больших силах механика перестает «срабатывать».

Важно! На вопрос: «При каких условиях выполняется закон Гука?», можно дать определенный ответ: «При малых деформациях».

Закон Гука, определение : деформация, которая возникает в теле, прямо пропорциональна силе, которая вызывает эту деформацию.

Естественно, это определение подразумевает, что:

  • сжатия или растяжения невелики;
  • предмет упругий;
  • он состоит из материала, при котором в результате сжатия или растяжения нет нелинейных процессов.

Закон Гука в математической форме

Формулировка Гука, которую мы привели выше, дает возможность записать его в следующем виде:

где — изменение длины тела вследствие сжатия или растяжения, F — сила, приложенная к телу и вызывающая деформацию (сила упругости), k — коэффициент упругости, измеряется в Н/м.

Следует помнить, что закон Гука справедлив только для малых растяжений.

Также отметим, что он при растяжении и сжатии имеет один и тот же вид. Учитывая, что сила — величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:

Но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение .

В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.

Степень применимости можно рассмотреть в таком виде:

Обратим внимание на график. Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться. На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.

При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться. На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства. При еще большем сжатии происходит «слипание» витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.

Как видим формула, выражающая закон, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:

Также, в отдельных случаях можно находить коэффициент упругости. Для того, чтобы понять как это делается, рассмотрим пример задачи:

К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 , из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров. Давайте попробуем узнать, из какого материала сделана пружина.

Найдем численное значение деформации пружины:

Отсюда можем выразить значение коэффициента:

Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.

Неприятности с коэффициентом упругости

Физика, как известно, наука очень точная, более того, она настолько точна, что создала целые прикладные науки, измеряющие погрешности. Будучи эталоном непоколебимой точности, она не может себе позволить быть нескладной.

Практика показывает, что рассмотренная нами линейная зависимость, является ничем иным как законом Гука для тонкого и растяжимого стержня. Лишь в качестве исключения можно применять его для пружин, но даже это является нежелательным.

Оказывается, что коэффициент k — переменная величина, которая зависит не только от того из какого материала тело, но и от диаметра и его линейных размеров.

По этой причине, наши умозаключения требуют уточнений и развития, ведь иначе, формулу:

нельзя назвать ничем иным как зависимостью между тремя переменными.

Модуль Юнга

Давайте попробуем разобраться с коэффициентом упругости. Этот параметр, как мы выяснили, зависит от трех величин :

  • материала (что нас вполне устраивает);
  • длины L (что указывает на его зависимость от);
  • площади S.

Важно! Таким образом, если нам удастся каким-то образом «отделить» из коэффициента длину L и площадь S, то мы получим коэффициент, полностью зависящий от материала.

Что нам известно:

  • чем больше площадь сечения тела, тем больше коэффициент k, причем зависимость линейная;
  • чем больше длина тела, тем меньше коэффициент k, причем зависимость обратно пропорциональная.

Значит, мы можем, коэффициент упругости записать таким образом:

причем Е — новый коэффициент, который теперь точно зависит исключительно от типа материала.

Введем понятие “относительное удлинение”:

Следует признать, что эта величина более содержательна, чем , поскольку она отражает не просто на сколько пружина сжалась или растянулась, а во сколько раз это произошло.

Поскольку мы уже «ввели в игру» S, то введем понятие нормального напряжения, которое записывается таким образом:

Важно! Нормальное напряжение представляет собой долю деформирующей силы на каждый элемент площади сечения.

Закон Гука и упругие деформации

Вывод

Сформулируем закон Гука при растяжении и сжатии : при малых сжатиях нормальное напряжение прямо пропорционально относительному удлинению.

Коэффициент Е называется модулем Юнга и зависит исключительно от материала.

Формула жесткости пружины - едва ли не самый важный момент в теме об этих упругих элементах. Ведь именно жесткость играет очень важную роль в том, благодаря чему эти комплектующие используются так широко.

Сегодня без пружин не обходится практически ни одна отрасль промышленности, они используются в приборо- и станкостроении, сельском хозяйстве, производстве горно-шахтного и железнодорожного оборудования, энергетике, других отраслях. Они верой и правдой служат в самых ответственных и критических местах различных агрегатов, где требуются присущие им характеристики, в первую очередь жесткость пружины, формула которой в общем виде очень проста и знакома детям еще со школы.

Особенности работы

Любая пружина представляет собой упругое изделие, которое в процессе эксплуатации подвергается статическим, динамическим и циклическим нагрузкам. Основная особенность этой детали - она деформируется под приложенным извне усилием, а когда воздействие прекращается - восстанавливает свою первоначальную форму и геометрические размеры. В период деформации происходит накопление энергии, при восстановлении - ее передача.

Именно это свойство возвращаться к исходному виду и принесло широкое распространение этим деталям: они отличные амортизаторы, элементы клапанов, предупреждающие превышение давления, комплектующие для измерительных приборов. В этих и других ситуациях, благодаря умению упруго деформироваться, они выполняют важную работу, поэтому от них требуется высокое качество и надежность.

Виды пружин

Видов этих деталей существует много, самыми распространенными являются пружины растяжения и сжатия.

  • Первые из них без нагрузки имеют нулевой шаг, то есть виток соприкасается с витком. В процессе деформации они растягиваются, их длина увеличивается. Прекращение нагрузки сопровождается возвращением в первоначальную форму - опять витком к витку.
  • Вторые - наоборот, изначально навиваются с определенным шагом между витками, под нагрузкой сжимаются. Соприкосновение витков является естественным ограничителем для продолжения воздействия.

Изначально именно для пружины растяжения было найдено соотношение массы подвешенного на ней груза и изменения ее геометрического размера, которое и стало основой для формулы жесткости пружины через массу и длину.

Какие еще бывают виды пружин

Зависимость деформации от прилагаемой внешней силы справедлива и для других видов упругих деталей: кручения, изгиба, тарельчатых, других. Не важно, в какой плоскости к ним прилагаются усилия: в той, где расположена осевая линия, или перпендикулярной к ней, производимая деформация пропорциональна усилию, под воздействием которого она произошла.

Основные характеристики

Независимо от вида пружин, особенности их работы, связанные с постоянно деформацией, требуют наличия таких параметров:

  • Способности сохранять постоянное значение упругости в течение заданного срока.
  • Пластичности.
  • Релаксационной стойкости, благодаря которой деформации не становятся необратимыми.
  • Прочности, то есть способности выдерживать различные виды нагрузок: статические, динамические, ударные.

Каждая из этих характеристик важна, однако при выборе упругой комплектующей для конкретной работы в первую очередь интересуются ее жесткостью как важным показателем того, подойдет ли она для этого дела и насколько долго будет работать.

Что такое жесткость

Жесткость - это характеристика детали, которая показывает, просто или легко будет ее сжать, насколько большую силу нужно для этого приложить. Оказывается, что возникающая под нагрузкой деформация тем больше, чем больше прилагаемая сила (ведь возникающая в противовес ей сила упругости по модулю имеет то же значение). Потому определить степень деформации можно, зная силу упругости (прилагаемое усилие) и наоборот, зная необходимую деформацию, можно вычислить, какое требуется усилие.

Физические основы понятия жесткость/упругость

Сила, воздействуя на пружину, изменяет ее форму. Например, пружины растяжения/сжатия под влиянием внешнего воздействия укорачиваются или удлиняются. Согласно закону Гука (так называется позволяющая рассчитать коэффициент жесткости пружины формула), сила и деформация между собой пропорциональны в пределах упругости конкретного вещества. В противодействие приложенной извне нагрузке возникает сила, такая же по величине и противоположная по знаку, которая направлена на восстановление исходных размеров детали и ее форму.

Природа этой силы упругости - электромагнитная, возникает она как следствие особого взаимодействии между структурными элементами (молекулами и атомами) материала, из которого изготовлена данная деталь. Таким образом, чем жесткость больше, то есть чем труднее упругую деталь растянуть/сжать, тем больше коэффициент упругости. Этот показатель используется, в частности, при выборе определенного материала для изготовления пружин для использования в различных ситуациях.

Как появился первый вариант формулы

Формула для расчета жесткости пружины, которая получила название закона Гука, была установлена экспериментально. В процессе опытов с подвешенными на упругом элементе грузами разной массы замерялась величина его растяжения. Так и выяснилось, что одна и та же испытуемая деталь под разными нагрузками претерпевает различные деформации. Причем подвешивание определенного количества гирек, одинаковых по массе, показало, что каждая добавленная/снятая гирька увеличивает/уменьшает длину упругого элемента на одинаковую величину.

В итоге этих экспериментов появилась такая формула: kx=mg, где k - некий постоянный для данной пружины коэффициент, x - изменение длины пружины, m - ее масса, а g - ускорение свободного падения (примерное значение - 9,8 м/с²).

Так было открыто свойство жесткости, которое, как и формула для определения коэффициента упругости, находит самое широкое применение в любой отрасли промышленности.

Формула определения жесткости

Изучаемая современными школьниками формула, как найти коэффициент жесткости пружины, представляет собой соотношение силы и величины, показывающей изменение длины пружины в зависимости от величины данного воздействия (или

равной ему по модулю силы упругости). Выглядит эта формула так: F = -kx. Из этой формулы коэффициент жесткости упругого элемента равен отношению силы упругости к изменению его длины. В международной системе единиц физических величин СИ он измеряется в ньютонах на метр (Н/м).

Другой вариант записи формулы: коэффициент Юнга

Деформация растяжения/сжатия в физике также может описываться несколько видоизмененным законом Гука. Формула включает значения относительной деформации (отношения изменения длины к ее начальному значению) и напряжения (отношения силы к площади поперечного сечения детали). Относительная деформация и напряжение по этой формуле пропорциональны, а коэффициент пропорциональности - величина, обратная модулю Юнга.

Модуль Юнга интересен тем, что определяется исключительно свойствами материала, и никак не зависит ни от формы детали, ни от ее размеров.

К примеру, модуль Юнга для ста

ли примерно равен единице с одиннадцатью нулями (единица измерения - Н/кв. м).

Смысл понятия коэффициент жесткости

Коэффициент жесткости - коэффициент пропорциональности из закона Гука. Еще он с полным правом называется коэффициентом упругости.

Фактически он показывает величину силы, которая должна быть приложена к упругому элементу, чтобы изменить его длину на единицу (в используемой системе измерений).

Значение этого параметра зависит от нескольких факторов, которыми характеризуется пружина:

  • Материала, используемого при ее изготовлении.
  • Формы и конструктивных особенностей.
  • Геометрических размеров.

По этому показателю можно сд

елать вывод, насколько изделие устойчиво к воздействию нагрузок, то есть каким будет его сопротивление при приложении внешнего воздействия.

Особенности расчета пружин

Показывающая, как найти жесткость пружины, формула, наверное, одна из наиболее используемых современными конструкторами. Ведь применение эти упругие детали находят практически везде, то есть требуется просчитывать их поведение и выбирать те из них, которые будут идеально справляться с возложенными обязанностями.

Закон Гука весьма упрощенно показывает зависимость деформации упругой детали от прилагаемого усилия, инженерами используются более точные формулы расчета коэффициента жесткости, учитывающие все особенности происходящего процесса.

Например:

  • Цилиндрическую витую пружину современная инженерия рассматривает как спираль из проволоки с круглым сечением, а ее деформация под воздействием существующих в системе сил представляется совокупностью элементарных сдвигов.
  • При деформации изгиба в качестве деформации рассматривается прогиб стержня, расположенного концами на опорах.

Особенности расчета жесткости соединений пружин

Важный моментом является расчет нескольких упругих элементов, соединенных последовательно или параллельно.

При параллельном расположении нескольких деталей общая жесткость этой системы определяется простой суммой коэффициентов отдельных комплектующих. Как нетрудно заметить, жесткость системы больше, чем отдельной детали.

При последовательном расположении формула более сложная: величина, обратная суммарной жесткости, равна сумме величин, обратных к жесткости каждой комплектующей. В этом варианте сумма меньше слагаемых.

Используя эти зависимости, легко определиться с правильным выбором упругих комплектующих для конкретного случая.

Необходимо знать точку приложения и направление каждой силы. Важно уметь определить какие именно силы действуют на тело и в каком направлении. Сила обозначается как , измеряется в Ньютонах. Для того, чтобы различать силы, их обозначают следующим образом

Ниже представлены основные силы, действующие в природе. Придумывать не существующие силы при решении задач нельзя!

Сил в природе много. Здесь рассмотрены силы, которые рассматриваются в школьном курсе физики при изучении динамики. А также упомянуты другие силы, которые будут рассмотрены в других разделах.

Сила тяжести

На каждое тело, находящееся на планете, действует гравитация Земли . Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз .


Сила трения

Познакомимся с силой трения. Эта сила возникает при движении тел и соприкосновении двух поверхностей. Возникает сила в результате того, что поверхности, если рассмотреть под микроскопом, не являются гладкими, как кажутся. Определяется сила трения по формуле:

Сила приложена в точке соприкосновения двух поверхностей. Направлена в сторону противоположную движению.

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно третьему закону Ньютона стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы "говорит" реагирует опора . Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, "сопротивляются".

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.


Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила упругости

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину - уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации - сила упругости.

Закон Гука


Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Подробнее о свойствах твердых тел .

Вес тела

Вес тела - это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести - сила, которая возникает в результате взаимодействия с Землей. Вес - результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же - сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.



Сила реакции опоры и вес - силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес - это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью . Невесомость - состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!



Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила

Обратите внимание, вес - сила, измеряется в Ньютонах. Как верно ответить на вопрос: "Сколько ты весишь"? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка - отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше - тонет.



Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как сила Кулона , сила Ампера , сила Лоренца , подробно рассмотрены в разделе Электричество .

Схематичное обозначение действующих на тело сил

Часто тело моделируют материальной точкой . Поэтому на схемах различные точки приложения переносят в одну точку - в центр, а тело изображают схематично кругом или прямоугольником.

Для того, чтобы верно обозначить силы, необходимо перечислить все тела, с которыми исследуемое тело взаимодействует. Определить, что происходит в результате взаимодействия с каждым: трение, деформация, притяжение или может быть отталкивание. Определить вид силы, верно обозначить направление. Внимание! Количество сил будет совпадать с числом тел, с которыми происходит взаимодействие.

Главное запомнить

1) Силы и их природа;
2) Направление сил;
3) Уметь обозначить действующие силы

Различают внешнее (сухое) и внутреннее (вязкое) трение. Внешнее трение возникает между соприкасающимися твердыми поверхностями, внутреннее - между слоями жидкости или газа при их относительном движении. Существует три вида внешнего трения: трение покоя, трение скольжения и трение качения.

Трение качения определяется по формуле

Сила сопротивления возникает при движении тела в жидкости или в газе. Величина силы сопротивления зависит от размеров и формы тела, скорости его движения и свойств жидкости или газа. При небольших скоростях движения сила сопротивления пропорциональна скорости тела

При больших скоростях пропорциональна квадрату скорости

Рассмотрим взаимное притяжение предмета и Земли. Между ними, согласно закону гравитации возникает сила

А сейчас сравним закон гравитации и силу тяжести

Величина ускорения свободного падения зависит от массы Земли и ее радиуса! Таким образом, можно высчитать, с каким ускорением будут падать предметы на Луне или на любой другой планете, используя массу и радиус той планеты.

Расстояние от центра Земли до полюсов меньше, чем до экватора. Поэтому и ускорение свободного падения на экваторе немного меньше, чем на полюсах. Вместе с тем, следует отметить, что основной причиной зависимости ускорения свободного падения от широты местности, является факт вращения Земли вокруг своей оси.

При удалении от поверхности Земли сила земного тяготения и ускорения свободного падения изменяются обратно пропорционально квадрату расстояния до центра Земли.


Упругие силы и деформации

Определение 1

Сила, возникающая в теле в результате его деформации и стремящаяся вернуть его в начальное состояние, называется силой упругости.

Все тела материального мира подвержены деформациям различного рода. Деформации возникают в силу перемещения и, как следствие, изменения положения частиц тела друг относительно друга. По степени обратимости можно выделить:

  • упругие, или обратимые деформации;
  • пластические (остаточные), или необратимые деформации.

В случаях, когда тело по завершении воздействия сил, приводящих к деформации, восстанавливает свои первоначальные параметры, деформация называется упругой.

Стоит отметить, что при упругой деформации воздействие внешней силы на тело не превышает предела упругости. Таким образом, силы упругости компенсируют внешнее воздействие на тело.

В ином случае деформация является пластической или остаточной. Тело, подвергшееся воздействия такого характера не восстанавливает начальные размеры и форму.

Упругие силы, возникающие в телах, не способны полностью уравновесить силы, вызывающие пластическую деформацию.

В целом, различают ряд простых деформаций:

  • растяжение (сжатие);
  • изгиб;
  • сдвиг;
  • кручение.

Как правило, деформации нередко представляют собой совокупность нескольких представленных типов воздействия, что позволяет свести все деформации к двум наиболее распространенным типам, а именно к растяжению и сдвигу.

Характеристики сил упругости

Модуль силы упругости, действующий на единицу площади, есть физическая величина, названная напряжением (механическим).

Механическое напряжение, в зависимости от направления приложения силы, может быть:

  • нормальным (направленным по нормали к поверхности, $σ$);
  • тангенциальным (направленным по касательной к поверхности, $τ$).

Замечание 1

Степень деформации характеризуется количественной мерой – относительной деформацией.

Так, например, относительное изменение длины стержня можно описать формулой:

$ε=\frac{\Delta l}{l}$,

а относительное продольное растяжение (сжатие):

$ε’=\frac{\Delta d}{d}$, где:

$l$ – длина, а $d$ – диаметр стержня.

Деформации $ε$ и $ε’$ протекают одновременно и имеют противоположные знаки, в силу того, что при растяжении изменение длины тела положительно, а изменение диаметра отрицательно; в случаях с сжатием тела знаки меняются на противоположные. Их взаимосвязь описывается формулой:

Здесь $μ$ – коэффициент Пуассона, зависящий от свойств материала.

Закон Гука

По своей природе, упругие силы относятся к электромагнитным, не фундаментальным силам, и, следовательно, они описываются приближенными формулами.

Так, эмпирически установлено, что для малых деформаций относительное удлинение и напряжение пропорциональны, или

Здесь $E$ – коэффициент пропорциональности, называемый также модулем Юнга. Он принимает такое значение, при котором относительное удлинение равно единице. Модуль Юнга измеряется в ньютонах на квадратный метр (паскалях).

Согласно закону Гука удлинение стержня при упругой деформации пропорционально действующей на стержень силе, или:

$F=\frac{ES}{l}\Delta l=k\Delta l$

Значение $k$ получило название коэффициента упругости.

Деформация твердых тел описывается законом Гука лишь до достижения предела пропорциональности. С повышением напряжения деформация перестает быть линейной, но, вплоть до достижения предела упругости, остаточные деформации не возникают. Таким образом, Закон Гука справедлив исключительно для упругих деформаций.

Пластические деформации

При дальнейшем возрастании воздействующих сил, возникают остаточные деформации.

Определение 2

Значение механического напряжения, при котором происходит возникновение заметной остаточной деформации, названо пределом текучести ($σт$).

Далее степень деформации возрастает без увеличения напряжения вплоть до достижения предела прочности ($σр$), когда происходит разрушение тела. Если графически изобразить возвращение тела в первоначальное состояние, то область между точками $σт$ и $σр$ получит название области текучести (области пластической деформации). В зависимости от размера этой области все материалы делятся на вязкие, у которых область текучести значительна, и хрупкие, у которых область текучести минимальна.

Отметим, что прежде мы рассматривали воздействие сил, приложенных по направлению нормали к поверхности. Если же внешние силы были приложены по касательной, возникает деформация сдвига. При этом в каждой точке тела возникает тангенциальное напряжение, определяемое модулем силы на единицу площади, или:

$τ=\frac{F}{S}$.

Относительный сдвиг в свою очередь может быть вычислен по формуле:

$γ=\frac{1}{G}τ$, где $G$ – модуль сдвига.

Модуль сдвига принимает такое значение тангенциального напряжения, при котором величина сдвига равна единице; измеряется $G$ так же, как и напряжение, в паскалях.

Слово «сила» настолько всеобъемлюще, что дать ему четкое понятие - задача практически невыполнимая. Разнообразие от силы мышц до силы разума не охватывает весь спектр вложенных в него понятий. Сила, рассмотренная как физическая величина, имеет четко определенное значение и определение. Формула силы задает математическую модель: зависимость силы от основных параметров.

История исследования сил включает определение зависимости от параметров и экспериментальное доказательство зависимости.

Сила в физике

Сила - мера взаимодействия тел. Взаимное действие тел друг на друга полностью описывает процессы, связанные с изменением скорости или деформацией тел.

Как физическая величина сила имеет единицу измерения (в системе СИ - Ньютон) и прибор для ее измерения - динамометр. Принцип действия силомера основан на сравнении силы, действующей на тело, с силой упругости пружины динамометра.

За силу в 1 ньютон принята сила, под действием которой тело массой 1 кг изменяет свою скорость на 1 м за 1 секунду.

Сила как определяется:

  • направлением действия;
  • точкой приложения;
  • модулем, абсолютной величиной.

Описывая взаимодействие, обязательно указывают эти параметры.

Виды природных взаимодействий: гравитационные, электромагнитные, сильные, слабые. Гравитационные всемирного тяготения с ее разновидностью - силой тяжести) существуют благодаря влиянию гравитационных полей, окружающих любое тело, имеющее массу. Исследование полей гравитации не закончено до сих пор. Найти источник поля пока не представляется возможным.

Больший ряд сил возникает вследствие электромагнитного взаимодействия атомов, из которых состоит вещество.

Сила давления

При взаимодействии тела с Землей оно оказывает давление на поверхность. Сила которой имеет вид: P = mg, определяется массой тела (m). Ускорение свободного падения (g) имеет различные значения на разных широтах Земли.

Сила вертикального давления равна по модулю и противоположна по направлению силе упругости, возникающей в опоре. Формула силы при этом меняется в зависимости от движения тела.

Изменение веса тела

Действие тела на опору вследствие взаимодействия с Землей чаще именуют весом тела. Интересно, что величина веса тела зависит от ускорения движения в вертикальном направлении. В том случае, когда направление ускорения противоположно ускорению свободного падения, наблюдается увеличение веса. Если ускорение тела совпадает с направлением свободного падения, то вес тела уменьшается. К примеру, находясь в поднимающемся лифте, в начале подъема человек чувствует увеличение веса некоторое время. Утверждать, что его масса меняется, не приходится. При этом разделяем понятия «вес тела» и его «масса».

Сила упругости

При изменении формы тела (его деформации) появляется сила, которая стремится вернуть телу его первоначальную форму. Этой силе дали название "сила упругости". Возникает она вследствие электрического взаимодействия частиц, из которых состоит тело.

Рассмотрим простейшую деформацию: растяжение и сжатие. Растяжение сопровождается увеличением линейных размеров тел, сжатие - их уменьшением. Величину, характеризующую эти процессы, называют удлинением тела. Обозначим ее "x". Формула силы упругости напрямую связана с удлинением. Каждое тело, подвергающееся деформации, имеет собственные геометрические и физические параметры. Зависимость упругого сопротивления деформации от свойств тела и материала, из которого оно изготовлено, определяется коэффициентом упругости, назовем его жесткостью (k).

Математическая модель упругого взаимодействия описывается законом Гука.

Сила, возникающая при деформации тела, направлена против направления смещения отдельных частей тела, прямо пропорциональна его удлинению:

  • F y = -kx (в векторной записи).

Знак «-» говорит о противоположности направления деформации и силы.

В скалярной форме отрицательный знак отсутствует. Сила упругости, формула которой имеет следующий вид F y = kx, используется только при упругих деформациях.

Взаимодействие магнитного поля с током

Влияние магнитного поля на постоянный ток описывается При этом сила, с которой магнитное поле действует на проводник с током, помещенный в него, называется силой Ампера.

Взаимодействие магнитного поля с вызывает силовое проявление. Сила Ампера, формула которой имеет вид F = IBlsinα, зависит от (В), длины активной части проводника (l), (I) в проводнике и угла между направлением тока и магнитной индукцией.

Благодаря последней зависимости можно утверждать, что вектор действия магнитного поля может измениться при повороте проводника или изменении направления тока. Правило левой руки позволяет установить направление действия. Если левую руку расположить таким образом, чтобы вектор магнитной индукции входил в ладонь, четыре пальца были направлены по току в проводнике, то отогнутый на 90 ° большой палец покажет направление действия магнитного поля.

Применение этому воздействию человечеством найдено, к примеру, в электродвигателях. Вращение ротора вызывается магнитным полем, созданным мощным электромагнитом. Формула силы позволяет судить о возможности изменения мощности двигателя. С увеличением силы тока или величины поля вращательный момент возрастает, что приводит к увеличению мощности двигателя.

Траектории частиц

Взаимодействие магнитного поля с зарядом широко используется в масс-спектрографах при исследовании элементарных частиц.

Действие поля при этом вызывает появление силы, названной силой Лоренца. При попадании в магнитное поле движущейся с некоторой скоростью заряженной частицы формула которой имеет вид F = vBqsinα, вызывает движение частицы по окружности.

В этой математической модели v - модуль скорости частицы, электрический заряд которой - q, В - магнитная индукция поля, α - угол между направлениями скорости и магнитной индукции.

Частица движется по окружности (либо дуге окружности), так как сила и скорость направлены под углом 90 ° друг к другу. Изменение направления линейной скорости вызывает появление ускорения.

Правило левой руки, рассмотренное выше, имеет место и при изучении силы Лоренца: если левую руку расположить таким образом, чтобы вектор магнитной индукции входил в ладонь, четыре пальца, вытянутых в линию, были направлены по скорости положительно заряженной частицы, то отогнутый на 90 ° большой палец покажет направление действия силы.

Проблемы плазмы

Взаимодействие магнитного поля и вещества используется в циклотронах. Проблемы, связанные с лабораторным изучением плазмы, не позволяют содержать ее в замкнутых сосудах. Высоко может существовать только при высоких температурах. Удержать плазму в одном месте пространства можно посредством магнитных полей, закручивая газ в виде кольца. Управляемые можно изучать, также закручивая высокотемпературную плазму в шнур при помощи магнитных полей.

Пример действия магнитного поля в естественных условиях на ионизированный газ - Полярное сияние. Это величественное зрелище наблюдается за полярным кругом на высоте 100 км над поверхностью земли. Загадочное красочное свечение газа пояснить смогли лишь в ХХ веке. Магнитное поле земли вблизи полюсов не может препятствовать проникновению солнечного ветра в атмосферу. Наиболее активное излучение, направленное вдоль линий магнитной индукции, вызывает ионизацию атмосферы.

Явления, связанные с движением заряда

Исторически сложилось так, что основной величиной, характеризующей протекание тока в проводнике, называют силу тока. Интересно, что это понятие ничего общего с силой в физике не имеет. Сила тока, формула которой включает заряд, протекающий за единицу времени через поперечное сечение проводника, имеет вид:

  • I = q/t, где t - время протекания заряда q.

Фактически, сила тока - величина заряда. Единицей ее измерения является Ампер (А), в отличие от Н.

Определение работы силы

Силовое воздействие на вещество сопровождается совершением работы. Работа силы - физическая величина, численно равная произведению силы на перемещение, пройденное под ее действием, и косинус угла между направлениями силы и перемещения.

Искомая работа силы, формула которой имеет вид A = FScosα, включает величину силы.

Действие тела сопровождается изменением скорости тела или деформацией, что говорит об одновременных изменениях энергии. Работа силы напрямую зависит от величины.