Солнечная радиация - ведущий климатообразующий фактор и практически единственный источник энергии для всех физических процессов, происходящих на земной поверхности и в ее атмосфере. Она обусловливает жизнедеятельность организмов, создавая тот или иной температурный режим; приводит к возникновению облаков и выпадению осадков; является основополагающей причиной общей циркуляции атмосферы, тем самым оказывая огромное влияние на жизнь людей во всех ее проявлениях. В строительстве и архитектуре солнечная радиация является важнейшим средовым фактором - от нее зависит ориентация зданий, их конструктивные, объемно-планировочные, колористические, пластические решения и многие другие особенности.

Согласно ГОСТ Р 55912-2013 «Климатология строительная» приняты следующие определения и понятия, связанные с солнечной радиацией:

  • прямая радиация - часть суммарной солнечной радиации, поступающей на поверхности в виде пучка параллельных лучей, приходящих непосредственно от видимого диска солнца;
  • рассеянная солнечная радиация - часть суммарной солнечной радиации, поступающей на поверхности со всего небосвода после рассеяния в атмосфере;
  • отраженная радиация - часть суммарной солнечной радиации, отраженной от подстилающей поверхности (в том числе от фасадов, кровель зданий);
  • интенсивность солнечной радиации - количество солнечной радиации, проходящее за единицу времени через единичную площадку, расположенную перпендикулярно лучам.

Все величины солнечной радиации в современных отечественных ГОСТах, СП (СНиПах) и других нормативных документах, связанных со строительством и архитектурой, измеряются в киловаттах в час на 1 м 2 (кВт ч/м 2). За единицу времени, как правило, принимается месяц. Чтобы получить мгновенное (секундное) значение мощности потока солнечной радиации (кВт/м 2), приведенную за месяц величину следует разделить на количество дней в месяце, количестве часов в сутках и секунд в часах.

Во многих ранних изданиях нормативных документов по строительству и во многих современных справочниках по климатологии значения солнечной радиации приводятся в мегаджоулях или килокалориях на м 2 (МДж/м 2 , Ккал/м 2). Коэффициенты перевода этих величин из одной в другую приведены в приложении 1.

Физическая сущность. Солнечная радиация приходит к Земле от Солнца. Солнце - ближайшая к нам звезда, которая в среднем отстоит от Земли на 149 450 000 км. В начале июля, когда Земля наиболее удалена от Солнца («афелий»), это расстояние увеличивается до 152 млн км, а в начале января оно уменьшается до 147 млн км («перигелий»).

Внутри солнечного ядра температура превышает 5 млн К, а давление больше земного в несколько миллиардов раз, вследствие чего водород превращается в гелий. В ходе этой термоядерной реакции и рождается лучистая энергия, которая распространяется от Солнца по всем направлениям в виде электромагнитных волн. При этом к Земле приходит целый спектр длин волн, который в метеорологии принято делить на коротковолновый и длинноволновый участки. Коротковолновой называют радиацию в диапазоне длин волн от 0,1 до 4 мкм (1 мкм = 10~ 6 м). Радиацию с большими длинами (от 4 до 120 мкм) относят к длинноволновой. Солнечная радиация является преимущественно коротковолновой - на указанный диапазон длин волн приходится 99% всей энергии солнечного излучения, в то время как земная поверхность и атмосфера излучают длинноволновую радиацию, а коротковолновую могут только отражать.

Солнце является источником не только энергии, но и света. Видимый свет занимает узкий интервал длин волн, всего от 0,40 до 0,76 мкм, однако в этом интервале заключается 47% всей солнечной лучистой энергии. Свет с длиной волны около 0,40 мкм воспринимается как фиолетовый, с длиной волны около 0,76 мкм - как красный. Все остальные длины волн человеческий глаз не воспринимает, т.е. они невидимы для нас 1 . На инфракрасное излучение (от 0,76 до 4 мкм) приходится 44%, а на ультрафиолетовое (от 0,01 до 0,39 мкм) - 9% всей энергии. Максимум энергии в спектре солнечной радиации на верхней границе атмосферы лежит в сине-голубой области спектра, а у поверхности земли - в желто-зеленой.

Количественной мерой солнечной радиации, поступающей на некоторую поверхность, служит энергетическая освещенность, или поток солнечной радиации, - количество лучистой энергии, падающей на единицу площади в единицу времени. Максимальное количество солнечной радиации поступает на верхнюю границу атмосферы и характеризуется величиной солнечной постоянной. Солнечная постоянная - это поток солнечной радиации на верхней границе земной атмосферы через площадку, перпендикулярную солнечным лучам, при среднем расстоянии Земли от Солнца. По последним данным, утвержденным Всемирной Метеорологической Организацией (ВМО) в 2007 г., эта величина составляет 1,366 кВт/м 2 (1366 Вт/м 2).

До земной поверхности доходит значительно меньшее количество солнечной радиации, поскольку по мере движения солнечных лучей через атмосферу радиация претерпевает ряд существенных изменений. Часть ее поглощается атмосферными газами и аэрозолями и переходит в теплоту, т.е. идет на нагревание атмосферы, а часть рассеивается и переходит в особую форму рассеянной радиации.

Процесс поглощения радиации в атмосфере носит селективный характер - разные газы поглощают ее в разных участках спектра и в разной степени. Основными газами, поглощающими солнечную радиацию, являются водяной пар (Н 2 0), озон (0 3) и углекислый газ (С0 2). Например, как было сказано выше, стратосферный озон полностью поглощает вредную для живых организмов радиацию с длинами волн короче 0,29 мкм, именно поэтому озоновый слой является естественным щитом существования жизни на Земле. В среднем озоном поглощается около 3% солнечного излучения. В красной и инфракрасной областях спектра наиболее существенно солнечную радиацию поглощает водяной пар. В этой же области спектра находятся полосы поглощения углекислого газа, однако

Более подробно о свете и цвете говорится в других разделах дисциплины «Архитектурная физика».

в целом поглощение им прямой радиации невелико. Поглощение солнечной радиации происходит и аэрозолями естественного и антропогенного происхождения, особенно сильно - частицами сажи. Всего водяным паром и аэрозолями поглощается около 15% солнечной радиации, облаками - примерно 5%.

Рассеяние радиации представляет собой физический процесс взаимодействия электромагнитного излучения и вещества, в ходе которого молекулы и атомы поглощают часть радиации, а потом переизлучают ее во всех направлениях. Это очень важный процесс, который зависит от соотношения величины рассеивающих частиц и длины волны падающего излучения. В абсолютно чистом воздухе, где рассеяние производится только молекулами газов, оно подчиняется закону Рэлея , т.е. обратно пропорционально четвертой степени длины волны рассеиваемых лучей. Таким образом, голубой цвет неба - это цвет самого воздуха, обусловленный рассеянием в нем солнечных лучей, поскольку фиолетовые и голубые лучи рассеиваются воздухом гораздо лучше, чем оранжевые и красные.

Если в воздухе присутствуют частицы, размеры которых сравнимы с длиной волны излучения - аэрозоли, капельки воды, кристаллы льда, - то рассеяние не будет подчиняться закону Рэлея, и рассеянная радиация окажется не так богата коротковолновыми лучами. На частицах же диаметром больше 1-2 мкм будет происходить не рассеяние, а диффузное отражение, что определяет белесый цвет неба.

Рассеяние играет огромную роль в формировании естественной освещенности: в отсутствие Солнца в дневное время оно создает рассеянный (диффузный) свет. Если бы не было рассеяния, светло было бы только там, куда попадали бы прямые солнечные лучи. Сумерки и заря, цвет облаков на восходе и закате также связаны с этим явлением.

Итак, к земной поверхности солнечная радиация поступает в виде двух потоков: прямой и рассеянной радиации.

Прямая радиация (5) приходит к земной поверхности непосредственно от солнечного диска. При этом максимально возможное количество радиации получит единичная площадка, расположенная перпендикулярно к солнечным лучам (5). На единицу горизонтальной поверхности придется меньшее количество лучистой энергии У, называемое также инсоляцией :

У = ?-8шА 0 , (1.1)

где И 0 - высота Солнца над горизонтом, определяющая угол падения солнечных лучей на горизонтальную поверхность.

Рассеянная радиация (/)) поступает на земную поверхность от всех точек небесного свода, за исключением солнечного диска.

Всю солнечную радиацию, приходящую на земную поверхность, называют суммарной солнечной радиацией (0:

  • (1.2)
  • 0 = + /) = И 0 + /).

Приход этих видов радиации существенно зависит не только от астрономических причин, но и от облачности. Поэтому в метеорологии принято различать возможные суммы радиации , наблюдающиеся при безоблачных условиях, и действительные суммы радиации , имеющие место при реальных условиях облачности.

Не вся падающая на земную поверхность солнечная радиация поглощается ею и превращается в тепло. Часть ее отражается и, следовательно, теряется подстилающей поверхностью. Эта часть называется отраженной радиацией (/? к), а ее величина зависит от альбедо земной поверхности (Л к):

А к = - 100%.

Величина альбедо измеряется в долях единицы или в процентах. В строительстве и архитектуре чаще используются доли единицы. В них также измеряются отражательная способность строительных и отделочных материалов, светлота окраски фасадов и т.д. В климатологии принято измерение альбедо в процентах.

Альбедо оказывает значительное влияние на процессы формирования климата Земли, так как является интегральным показателем отражательной способности подстилающей поверхности. Оно зависит от состояния этой поверхности (шероховатости, цвета, увлажненности) и меняется в очень широких пределах. Самые высокие значения альбедо (до 75%) характерны для свежевыпавшего снега, а самые низкие - для водной поверхности при отвесном падении солнечных лучей («3%). Альбедо поверхности почвы и растительности в среднем меняется от 10 до 30%.

Если рассматривать всю Землю в целом, то ее альбедо составляет 30%. Эта величина носит название планетарного альбедо Земли и представляет собой отношение уходящей в космос отраженной и рассеянной солнечной радиации к общему количеству радиации, поступающей к атмосфере.

На территории городов альбедо, как правило, ниже, чем в естественных, ненарушенных ландшафтах. Характерное значение альбедо для территории крупных городов умеренного климата составляет 15-18%. В южных городах альбедо, как правило, выше за счет применения более светлых тонов в окраске фасадов и кровель, в северных городах с плотной застройкой и темными колористическими решениями зданий альбедо ниже. Это позволяет в южных жарких странах уменьшать количество поглощенной солнечной радиации, снижая тем самым тепловой фон застройки, а в северных холодных районах, наоборот, увеличивать долю поглощенной солнечной радиации, повышая общий тепловой фон.

Поглощенная радиация (*У П0ГЛ) называется также балансом коротковолновой радиации (В к) и представляет собой разность суммарной и отраженной радиации (двух коротковолновых потоков):

^погл = 5 к = 0~ Я К- (1.4)

Она нагревает верхние слои земной поверхности и все, что на ней расположено (растительный покров, дороги, здания, сооружения и т.д.), вследствие чего они излучают длинноволновую радиацию, невидимую человеческим глазом. Эту радиацию чаще называют собственным излучением земной поверхности (? 3). Величина ее, согласно закону Стефана - Больцмана, пропорциональна четвертой степени абсолютной температуры.

Атмосфера также излучает длинноволновую радиацию, большая часть которой приходит к земной поверхности и почти полностью поглощается ею. Эту радиацию называют встречным излучением атмосферы (Е а). Встречное излучение атмосферы возрастает с увеличением облачности и влажности воздуха и является очень важным источником тепла для земной поверхности. Тем не менее длинноволновое излучение атмосферы всегда немного меньше земного, за счет чего земная поверхность теряет тепло, а разница между этими значениями называется эффективным излучением Земли (Е эф).

В среднем в умеренных широтах земная поверхность через эффективное излучение теряет примерно половину того количества тепла, которое она получает от поглощенной солнечной радиации. Поглощая земное излучение и посылая встречное излучение к земной поверхности, атмосфера уменьшает охлаждение этой поверхности в ночное время суток. Днем же она мало препятствует нагреванию поверхности Земли. Это влияние земной атмосферы на тепловой режим земной поверхности и носит название парникового эффекта. Таким образом, явление парникового эффекта состоит в удерживании тепла вблизи поверхности Земли. Большую роль в этом процессе играют газы техногенного происхождения, прежде всего - углекислый газ, концентрация которого на территории городов особенно высока. Но главная роль все же принадлежит газам естественного происхождения.

Основной субстанцией в атмосфере, поглощающей длинноволновое излучение Земли и посылающей встречное излучение, является водяной пар. Он поглощает практически всю длинноволновую радиацию за исключением интервала длин волн от 8,5 до 12 мкм, который называется «окном прозрачности» водяного пара. Только в этом интервале земное излучение проходит в мировое пространство сквозь атмосферу. Кроме водяного пара сильно поглощает длинноволновое излучение углекислый газ, причем именно в окне прозрачности водяного пара, гораздо слабее - озон, а также метан, оксид азота, хлорфторуглероды (фреоны) и некоторые другие газовые примеси.

Удержание тепла вблизи земной поверхности - очень важный процесс для поддержания жизни. Не будь его, средняя температура у Земли была бы на 33°С ниже существующей, и на Земле вряд ли могли бы обитать живые организмы. Поэтому дело не в парниковом эффекте как таковом (ведь он возник с момента образования атмосферы), а в том, что под влиянием антропогенной деятельности происходит усиление этого эффекта. Причина - в быстром росте концентрации парниковых газов техногенного происхождения, в основном - С0 2 , выбрасываемого при сжигании органического топлива. Это может привести к тому, что при той же поступающей радиации доля остающегося на планете тепла увеличится, а следовательно, увеличится и температура земной поверхности и атмосферы. За последние 100 лет температура воздуха нашей планеты в среднем увеличилась на 0,6°С.

Считается, что при удвоении концентрации С0 2 относительно ее доиндустриального значения глобальное потепление составит около 3°С (по разным оценкам - от 1,5 до 5,5°С). При этом наибольшие изменения должны произойти в тропосфере высоких широт в осенне-зимний период. Как следствие, начнет таять лед в Арктике и Антарктиде и уровень Мирового океана начнет повышаться. Это повышение может составить от 25 до 165 см, а значит, многие города, расположенные в прибрежных зонах морей и океанов, будут затоплены.

Таким образом, это очень важная проблема, касающаяся жизни миллионов людей. Учитывая это в 1988 г. в Торонто состоялась первая Международная конференция по проблеме антропогенного изменения климата. Ученые пришли к выводу, что последствия усиления парникового эффекта из-за роста содержания в атмосфере углекислого газа уступают лишь последствиям мировой ядерной войны. Тогда же при Организации Объединенных Наций (ООН) была образована Межправительственная группа экспертов по проблемам изменения климата - МГЭИК (IPCC - Intergovernmental Panel on Climate Change ), которая изучает влияние повышения приземной температуры на климат, экосистему Мирового океана, биосферу в целом, в том числе на жизнь и здоровье населения планеты.

В 1992 г. в Нью-Йорке была принята Рамочная конвенция об изменении климата (РКИК), главной целью которой провозглашено обеспечение стабилизации концентраций парниковых газов в атмосфере на уровнях, позволяющих предотвратить опасные последствия вмешательства человека в климатическую систему. Для практической реализации конвенции в декабре 1997 г. в г. Киото (Япония) на международной конференции был принят Киотский протокол. В нем определены конкретные квоты на выброс парниковых газов странами-участницами, в том числе и Россией, ратифицировавшей этот Протокол в 2005 г.

К моменту написания данной книги одной из последних конференций, посвященных климатическим изменениям, является Конференция по климату в Париже, проходившая с 30 ноября по 12 декабря 2015 г. Цель этой конференции - подписание международного соглашения по сдерживанию увеличения средней температуры планеты к 2100 г. не выше 2°С.

Итак, в результате взаимодействия разнообразных потоков коротковолновой и длинноволновой радиации земная поверхность непрерывно получает и теряет тепло. Результирующей величиной прихода и расхода радиации является радиационный баланс (В ), который и определяет тепловое состояние земной поверхности и приземного слоя воздуха, а именно их нагревание или охлаждение:

В = Q -« к - ?эф = 60 - А )-? эф =

= (5"sin/^ > + D)(l-А)-Е^ф = В к +В а. (

Данные о радиационном балансе необходимы для оценки степени нагревания и охлаждения различных поверхностей как в естественных условиях, так и в архитектурной среде, расчета теплового режима зданий и сооружений, определения испарения, теплоза-пасов в почве, нормирования орошения сельскохозяйственных полей и других народно-хозяйственных целей.

Методы измерения. Ключевое значение исследований радиационного баланса Земли для понимания закономерностей климата и формирования микроклиматических условий определяет основополагающую роль данных наблюдений за его составляющими - актинометрических наблюдений.

На метеорологических станциях России применяется термоэлектрический метод измерения радиационных потоков. Измеряемая радиация поглощается черной приемной поверхностью приборов, превращается в тепло и нагревает активные спаи термобатареи, тогда как пассивные спаи не нагреваются радиацией и имеют более низкую температуру. Вследствие различия температур активных и пассивных спаев на выводе термобатареи возникает термоэлектродвижущая сила, пропорциональная интенсивности измеряемой радиации. Таким образом, большинство актинометрических приборов являются относительными - они измеряют не сами потоки радиации, а пропорциональные им величины - силу тока или напряжение. Для этого приборы присоединяются, например, к цифровым мультиметрам, а ранее - к стрелочным гальванометрам. При этом в паспорте каждого прибора приводится так называемый «переводной множитель» - цена деления электроизмерительного прибора (Вт/м 2). Этот множитель рассчитывается путем сравнения показаний того или иного относительного прибора с показаниями абсолютных приборов - пиргелиометров.

Принцип действия абсолютных приборов иной. Так, в компенсационном пиргелиометре Ангстрема зачерненная металлическая пластинка выставляется на солнце, а другая такая же пластинка остается в тени. Между ними возникает разность температур, которая передается спаям термоэлемента, прикрепленным к пластинам, и таким образом возбуждается термоэлектрический ток. При этом через затененную пластину пропускается ток от батареи до тех пор, пока она не нагреется до той же температуры, что и пластина, находящаяся на солнце, после чего термоэлектрический ток исчезает. По силе пропущенного «компенсирующего» тока можно определить количество тепла, полученного зачерненной пластиной, которое, в свою очередь, будет равно количеству тепла, полученному от Солнца первой пластиной. Таким образом, можно определить величину солнечной радиации.

На метеостанциях России (а ранее - СССР), проводящих наблюдения за составляющими радиационного баланса, однородность рядов актинометрических данных обеспечивается использованием однотипных приборов и их тщательной градуировкой, а также одинаковой методикой измерений и обработки данных. В качестве приемников интегральной солнечной радиации (

В термоэлектрическом актинометре Савинова - Янишевского, внешний вид которого показан на рис. 1.6, приемная часть представляет собой тонкий металлический зачерненный диск из серебряной фольги, к которому через изоляцию приклеены нечетные (активные) спаи термобатареи. При измерениях этот диск поглощает солнечную радиацию, вследствие чего температура диска и активных спаев повышается. Четные же (пассивные) спаи через изоляцию приклеены к медному кольцу в корпусе прибора и имеют температуру, близкую к температуре наружного воздуха. Эта разность температур при замыкании внешней цепи термобатареи и создает термоэлектрический ток, сила которого пропорциональна интенсивности солнечной радиации.

Рис. 1.6.

В пиранометре (рис. 1.7) приемная часть чаще всего представляет собой батарею термоэлементов, например из манганина и кон-стантана, с зачерненными и белыми спаями, которые неодинаково нагреваются под действием приходящей радиации. Приемная часть прибора должна иметь горизонтальное положение, чтобы воспринимать рассеянную радиацию со всего небесного свода. От прямой радиации пиранометр затеняется экраном, а от встречного излучения атмосферы защищен стеклянным колпаком. При измерениях суммарной радиации пиранометр от прямых лучей не затеняют.

Рис. 1.7.

Специальное устройство (откидная плита) позволяет придавать головке пиранометра два положения: приемником вверх и приемником вниз. В последнем случае пиранометр измеряет отраженную от земной поверхности коротковолновую радиацию. В маршрутных наблюдениях для этого применяют так называемый походный алъбе-дометр, представляющий собой головку пиранометра, соединенную с опрокидывающимся кардановым подвесом с рукояткой.

Термоэлектрический балансомер состоит из корпуса с термобатареей, двух приемных пластинок и рукоятки (рис. 1.8). В дискообразном корпусе (/) имеется квадратный вырез, где укреплена термобатарея (2). Рукоять (3 ), припаянная к корпусу, служит для установки балансомера на стойке.

Рис. 1.8.

Одна зачерненная приемная пластинка балансомера направлена вверх, другая - вниз, к земной поверхности. Принцип действия незатененного балансомера основан на том, что все виды радиации, приходящей к деятельной поверхности (У, /) и Е а), поглощаются зачерненной приемной поверхностью прибора, обращенной вверх, а все виды радиации, уходящей от деятельной поверхности (/? к, /? л и Е 3), поглощаются пластиной, направленной вниз. Каждая приемная пластинка сама также излучает длинноволновую радиацию, кроме того, происходит теплообмен с окружающим воздухом и корпусом прибора. Однако благодаря высокой теплопроводности корпуса происходит большая отдача тепла, что не позволяет образовываться существенной разности температур приемных пластинок. По этой причине собственным излучением обоих пластин можно пренебречь, а по разности их нагрева - определить величину радиационного баланса любой поверхности, в плоскости которой расположен балансомер.

Поскольку приемные поверхности балансомера не закрыты стеклянным колпаком (иначе было бы невозможно измерить длинноволновую радиацию), показания этого прибора зависят от скорости ветра, уменьшающего разность температур приемных поверхностей. По этой причине показания балансомера приводят к штилевым условиям, предварительно измерив скорость ветра на уровне прибора.

Для автоматической регистрации измерений термоэлектрический ток, возникающий в описанных выше приборах, подводят на самопишущий электронный потенциометр. Изменения силы тока записываются на движущейся бумажной ленте, при этом актинометр должен автоматически вращаться так, чтобы его приемная часть следовала за Солнцем, а пиранометр должен быть всегда затенен от прямой радиации особой кольцевой защитой.

Актинометрические наблюдения, в отличие от основных метеонаблюдений, проводятся шесть раз в сутки в сроки: 00 ч 30 мин, 06 ч 30 мин, 09 ч 30 мин, 12 ч 30 мин, 15 ч 30 мин и 18 ч 30 мин. Поскольку интенсивность всех видов коротковолновой радиации зависит от высоты Солнца над горизонтом, сроки наблюдений устанавливаются по среднему солнечному времени станции.

Характерные значения. Величины потоков прямой и суммарной радиации играют одну из важнейших ролей в архитектурно-климатическом анализе. Именно с их учетом связаны ориентация зданий по сторонам горизонта, их объемно-планировочное и колористическое решение, внутренняя планировка, размеры светопроемов и ряд других архитектурных особенностей. Поэтому суточный и годовой ход характерных значений будет рассмотрен именно для этих величин солнечной радиации.

Энергетическая освещенность прямой солнечной радиации в условиях безоблачного неба зависит от высоты солнца, свойств атмосферы на пути солнечного луча, характеризуемой коэффициентом прозрачности (величиной, показывающей, какая доля солнечной радиации доходит до земной поверхности при отвесном падении солнечных лучей) и от длины этого пути.

Прямая солнечная радиация при безоблачном небе имеет довольно простой суточный ход с максимумом в околополуденные часы (рис. 1.9). Как следует из рисунка, в течение дня поток солнечной радиации сначала быстро, потом медленнее нарастает от восхода Солнца до полудня и сначала медленно, потом быстро убывает от полудня до захода Солнца. Различия в энергетической освещенности в полдень при ясном небе в январе и июле в первую очередь связаны с различиями в полуденной высоте Солнца, которая зимой меньше, чем летом. В то же время в континентальных районах часто наблюдается асимметричность суточного хода, обусловленная различием прозрачности атмосферы в до- и послеполуденные часы. Влияет прозрачность атмосферы и на годовой ход среднемесячных значений прямой солнечной радиации. Максимум радиации при безоблачном небе может смещаться на весенние месяцы, поскольку весной запыленность и влагосодержание атмосферы ниже, чем осенью.

5 1 , кВт/м 2

б", кВт/м 2

Рис. 1.9.

и при средних условиях облачности (б):

7 - на перпендикулярную к лучам поверхность в июле; 2 - на горизонтальную поверхность в июле; 3 - на перпендикулярную поверхность в январе; 4 - на горизонтальную поверхность в январе

Облачность снижает приход солнечной радиации и может существенно изменить ее суточный ход, что проявляется в соотношении до- и послеполуденных часовых сумм. Так, в большей части континентальных районов России в весенне-летние месяцы часовые суммы прямой радиации в дополуденные часы больше, чем в послеполуденные (рис. 1.9, б). Это в основном определяется суточным ходом облачности, которая начинает развиваться в 9-10 часов утра и достигает максимума в послеполуденные часы, уменьшая, таким образом, радиацию. Общее же снижение притока прямой солнечной радиации при действительных условиях облачности может быть очень существенным. Например, во Владивостоке с его муссонным климатом эти потери летом составляют 75%, а в Санкт-Петербурге даже в среднем за год облака не пропускают к земной поверхности 65% прямой радиации, в Москве - около половины.

Распределение годовых сумм прямой солнечной радиации при средних условиях облачности по территории России показано на рис. 1.10. В значительной степени этот фактор, снижающий количество солнечной радиации, зависит от циркуляции атмосферы, что приводит к нарушению широтного распределения радиации.

Как видно из рисунка, в целом годовые суммы прямой радиации, приходящей на горизонтальную поверхность, увеличиваются от высоких широт к более низким от 800 до почти 3000 МДж/м 2 . Большое количество облаков в европейской части России приводит к уменьшению годовых сумм по сравнению с районами Восточной Сибири, где в основном за счет влияния азиатского антициклона в зимний период годовые суммы возрастают. В то же время летний муссон приводит к уменьшению годового прихода радиации в прибрежных районах на Дальнем Востоке. Диапазон изменения полуденной интенсивности прямой солнечной радиации на территории России изменяется от 0,54-0,91 кВт/м 2 летом до 0,02-0,43 кВт/м 2 зимой.

Рассеянная радиация, поступающая на горизонтальную поверхность, также изменяется в течение дня, возрастая до полудня и убывая после него (рис. 1.11).

Как и в случае с прямой солнечной радиацией, на приход рассеянной радиации влияет не только высота солнца и продолжительность дня, но и прозрачность атмосферы. Однако уменьшение последней ведет к увеличению рассеянной радиации (в отличие от прямой). Кроме того, рассеянная радиация в очень широких пределах зависит от облачности: при средних условиях облачности ее приход более чем в два раза превосходит значения, наблюдающиеся при ясном небе. В отдельные же дни облачность увеличивает этот показатель в 3-4 раза. Таким образом, рассеянная радиация может существенно дополнять прямую, особенно при низком положении Солнца.


Рис. 1.10. Прямая солнечная радиация, поступающая на горизонтальную поверхность при средних условиях облачности, МДж/м 2 в год (1 МДж/м 2 = 0,278 кВт? ч/м 2)

/), кВт/м 2 0,3 г

  • 0,2 -
  • 0,1 -

4 6 8 10 12 14 16 18 20 22 Часы

Рис. 1.11.

и при средних условиях облачности (б)

Величина рассеянной солнечной радиации в тропиках составляет от 50 до 75% прямой; под 50-60° широты она близка к прямой, а в высоких широтах почти весь год превышает прямую солнечную радиацию.

Очень важным фактором, влияющим на поток рассеянной радиации, является альбедо подстилающей поверхности. Если альбедо достаточно велико, то отраженная от подстилающей поверхности радиация, рассеиваемая атмосферой в обратном направлении, может обусловить значительное увеличение прихода рассеянной радиации. Наиболее сильно эффект проявляется при наличии снежного покрова, обладающего наибольшей отражательной способностью.

Суммарная радиация при безоблачном небе (возможная радиация) зависит от широты места, высоты солнца, оптических свойств атмосферы и характера подстилающей поверхности. В условиях ясного неба она имеет простой суточный ход с максимумом в полдень. Асимметрия суточного хода, характерная для прямой радиации, в суммарной радиации проявляется мало, так как уменьшение прямой радиации в связи с ростом замутнения атмосферы во второй половине дня компенсируется увеличением рассеянной благодаря тому же фактору. В годовом ходе максимальная интенсивность суммарной радиации при безоблачном небе на большей части тер-

ритории России наблюдается в июне в связи с максимальной полуденной высотой солнца. Однако в некоторых районах это влияние перекрывается влиянием прозрачности атмосферы, и максимум смещается на май (например, в Забайкалье, Приморье, на Сахалине и в ряде районов Восточной Сибири). Распределение месячных и годовых сумм суммарной солнечной радиации при безоблачном небе приведено в табл. 1.9 и на рис. 1.12 в виде осредненных по широтам значений.

Из приведенных таблицы и рисунка видно, что во все сезоны года как интенсивность, так и суммы радиации возрастают с севера на юг в соответствии с изменением высоты солнца. Исключение составляет период с мая по июль, когда сочетание большой продолжительности дня и высоты солнца обеспечивает довольно высокие значения суммарной радиации на севере и в целом на территории России поле радиации размыто, т.е. не имеет выраженных градиентов.

Таблица 1.9

Суммарная солнечная радиация на горизонтальную поверхность

при безоблачном небе (кВт ч/м 2)

Географическая широта, ° с.ш.

Сентябрь

Рис. 1.12. Суммарная солнечная радиация на горизонтальную поверхность при безоблачном небе на различных широтах (1 МДж/м 2 = 0,278 кВт ч/м 2)

При наличии облачности суммарная солнечная радиация определяется не только количеством и формой облаков, но и состоянием солнечного диска. При просвечивающем сквозь облака солнечном диске суммарная радиация по сравнению с безоблачными условиями может даже увеличиваться вследствие роста рассеянной радиации.

Для средних условий облачности наблюдается вполне закономерный суточный ход суммарной радиации: постепенное нарастание от восхода солнца до полудня и убывание от полудня до захода. В то же время суточный ход облачности нарушает симметрию хода относительно полудня, характерную для безоблачного неба. Так, в большинстве районов России в теплый период дополуденные значения суммарной радиации на 3-8% превышают послеполуденные, за исключением муссонных областей Дальнего Востока, где соотношение обратное. В годовом ходе средних многолетних месячных сумм суммарной радиации наряду с определяющим астрономическим фактором проявляется циркуляционный (через влияние облачности), поэтому максимум может смещаться с июня на июль и даже на май (рис. 1.13).

  • 600 -
  • 500 -
  • 400 -
  • 300 -
  • 200 -

м. Челюскин

Салехард

Архангельск

С.-Петербург

Петропавловск

Камчатский

Хабаровск

Астрахань

Рис. 1.13. Суммарная солнечная радиация на горизонтальную поверхность в отдельных городах России при реальных условиях облачности (1 МДж/м 2 = 0,278 кВт ч/м 2)

5", МДж/м 2 700

Итак, реальный месячный и годовой приход суммарной радиации составляет лишь часть возможного. Самые большие отклонения реальных сумм от возможных летом отмечаются на Дальнем Востоке, где облачность снижает суммарную радиацию на 40-60%. В целом же общий годовой приход суммарной радиации изменяется по территории России в широтном направлении, увеличиваясь от 2800 МДж/м 2 на побережьях северных морей до 4800- 5000 МДж/м 2 в южных районах России - Северном Кавказе, Нижнем Поволжье, Забайкалье и Приморском крае (рис. 1.14).


Рис. 1.14. Суммарная радиация, поступающая на горизонтальную поверхность, МДж/м 2 в год

Летом различия в суммарной солнечной радиации при реальных условиях облачности между городами, расположенными на разных широтах, не такие «драматичные», как это может показаться с первого взгляда. Для европейской части России от Астрахани до мыса Челюскин эти значения лежат в пределах 550-650 МДж/м 2 . Зимой в большинстве городов, за исключением Заполярья, где наступает полярная ночь, суммарная радиация составляет 50-150 МДж/м 2 в месяц.

Для сравнения: средние за январь показатели теплотности 1 городской застройки (рассчитанные по фактическим данным для Москвы), составляют от 220 МДж/м 2 в месяц в городских градостроительных узлах до 120-150 МДж/м 2 на межмагистральных территориях с низкоплотной жилой застройкой. На территориях производственных и коммунально-складских зон показатели теплотности в январе составляют 140 МДж/м 2 . Суммарная солнечная радиация в Москве составляет в январе 62 МДж/м 2 . Таким образом, в зимнее время за счет использования солнечной радиации возможно покрыть не более 10-15% (с учетом эффективности солнечных батарей 40%) расчетной теплотности застройки средней плотности даже в известных своей солнечной зимней погодой Иркутске и Якутске, даже если полностью покрыть их территорию фотоэлектрическими панелями.

Летом суммарная солнечная радиация возрастает в 6-9 раз, а те-плопотребление сокращается в 5-7 раз по сравнению с зимой. Показатели теплотности в июле снижаются до значений 35 МДж/м 2 и менее - на жилых территориях и 15 МДж/м 2 и менее - на территориях производственного назначения, т.е. до величин, составляющих не более 3-5% от суммарной солнечной радиации. Поэтому летом, когда потребности в отоплении и освещении минимальны, по всей территории России наблюдается избыток этого возобновляемого природного ресурса, который невозможно утилизировать, что еще раз ставит под сомнение целесообразность применения фотоэлектрических панелей, по крайней мере, в городах и многоквартирных зданиях.

Потребление электроэнергии (без отопления и горячего водоснабжения), также связанное с неравномерностью распределения общей площади застройки, плотности населения и функциональным назначением различных территорий, находится в пре-

Теплотность - усредненный показатель потребления всех видов энергии (электричество, отопление, горячее водоснабжение) на 1 м 2 территории застройки.

делах от 37 МДж/м 2 в месяц (рассчитано как 1/12 годовой суммы) в плотно застроенных районах и до 10-15 МДж/м 2 в месяц в районах с низкой плотностью застройки. В дневные часы и летом потребление электроэнергии, естественно, падает. Плотность потребления электроэнергии в июле в большинстве районов жилой и смешанной застройки составляет 8-12 МДж/м 2 при суммарной солнечной радиации в реальных условиях облачности в Москве около 600 МДж/м 2 . Таким образом, для покрытия нужд в электроснабжении городской застройки (на примере Москвы) требуется утилизировать лишь около 1,5-2% солнечной радиации. Остальная радиация, в случае ее утилизации, будет избыточной. При этом еще предстоит решить вопрос о накоплении и сохранении дневной солнечной радиации для освещения в вечернее и ночное время, когда нагрузки на системы электроснабжения максимальны, а солнце почти или совсем не светит. Для этого потребуется передача электроэнергии на большие расстояния между районами, где Солнце еще достаточно высоко, и теми, где Солнце уже зашло за горизонт. При этом потери электроэнергии в сетях будут сопоставимы с ее экономией за счет использования фотоэлектрических панелей. Либо потребуется использование аккумуляторных батарей большой емкости, производство, установка и последующая утилизация которых потребует энергозатрат, которые вряд ли покроются за счет экономии электроэнергии, накопленной за весь период их эксплуатации.

Другим, не менее важным фактором, делающим сомнительной целесообразность перехода на солнечные батареи как альтернативный источник электроснабжения в масштабах города, является то, что в конечном счете работа фотоэлементов приведет к значительному увеличению поглощенной на территории города солнечной радиации, а следовательно, к повышению температуры воздуха в городе в летнее время. Таким образом, одновременно с охлаждением за счет фотопанелей и запитываемых от них кондиционеров воздуха внутренней среды будет происходить общее повышение температуры воздуха в городе, что в конечном счете сведет к нулю всю выгоду экономическую и экологическую от экономии электроэнергии за счет использования пока еще очень дорогих фотоэлектрических панелей.

Отсюда следует, что установка оборудования для преобразования солнечной радиации в электричество оправдывает себя в весьма ограниченном перечне случаев: только летом, только в климатических районах с сухой жаркой малооблачной погодой, только в малых городах или отдельных коттеджных поселках и только если эта электроэнергия используется для работы установок по кондиционированию и вентиляции внутренней среды зданий. В иных случаях - других районах, других градостроительных условиях и в другое время года - применение фотоэлектрических панелей и солнечных коллекторов для нужд электро-и теплоснабжения рядовой застройки в средних и крупных городах, расположенных в умеренном климате, неэффективно.

Биоклиматическое значение солнечной радиации. Определяющая роль воздействия солнечной радиации на живые организмы сводится к участию в формировании их радиационного и теплового балансов за счет тепловой энергии в видимой и инфракрасной части солнечного спектра.

Видимые лучи имеют особенно большое значение для организмов. Большинство животных, как и человек, хорошо различают спектральный состав света, а некоторые насекомые видят даже в ультрафиолетовом диапазоне. Наличие светового зрения и световой ориентации является важным фактором выживания. Например, у человека наличие цветового зрения - один из наиболее психоэмоциональных и оптимизирующих факторов жизни. Пребывание в темноте оказывает противоположное действие.

Как известно, зеленые растения синтезируют органическое вещество и, следовательно, производят пищу для всех остальных организмов, в том числе человека. Этот важнейший для жизни процесс происходит при ассимиляции солнечного излучения, причем растениями используется определенный диапазон спектра в интервале длин волн 0,38-0,71 мкм. Эта радиация называется фотосинтетически активной радиацией (ФАР) и имеет очень большое значение для продуктивности растений.

Видимая часть света создает естественную освещенность. По отношению к ней все растения делятся на светолюбивые и теневыносливые. Недостаточная освещенность обусловливает слабость стебля, ослабляет образование колосьев и початков на растениях, снижает содержание сахара и количества масел в культурных растениях, затрудняет использование ими минерального питания и удобрений.

Биологическое действие инфракрасных лучей состоит в тепловом эффекте при их поглощении тканями растений и животных. При этом изменяется кинетическая энергия молекул, происходит ускорение электрических и химических процессов. За счет инфракрасной радиации компенсируется недостаток тепла (особенно в высокогорных районах и в высоких широтах), получаемого растениями и животными из окружающего пространства.

Ультрафиолетовое излучение по биологическим свойствам и воздействию на человека принято делить на три области: область А - с длинами волн от 0,32 до 0,39 мкм; область В - от 0,28 до 0,32 мкм и область С - от 0,01 до 0,28 мкм. Область А характеризуется сравнительно слабо выраженным биологическим действием. Она вызывает лишь флюоресценцию ряда органических веществ, у человека способствует образованию пигмента в коже и слабой эритемы (покраснение кожи).

Значительно более активными являются лучи области В. Многообразные реакции организмов на ультрафиолетовое облучение, изменения в коже, крови и т.д. в основном обусловлены ими. Известное витаминообразующее действие ультрафиолета заключается в том, что эргостерон питательных веществ переходит в витамин О, оказывающий сильное возбуждающее влияние на рост и обмен веществ.

Самое мощное биологическое действие на живые клетки оказывают лучи области С. Бактерицидное действие солнечного света в основном обусловлено ими. В небольших дозах ультрафиолетовые лучи необходимы растениям, животным и человеку, особенно детям. Однако в большом количестве лучи области С губительны для всего живого, и жизнь на Земле возможна лишь потому, что это коротковолновое излучение практически полностью задерживается озоновым слоем атмосферы. Особенно актуальным решение вопроса о воздействии избыточных доз ультрафиолетовой радиации на биосферу и человека стало в последние десятилетия в связи с истощением озонового слоя атмосферы Земли.

Действие ультрафиолетовой радиации (УФР), достигающей земной поверхности, на живой организм весьма разнообразно. Как было указано выше, в умеренных дозах она оказывает благотворное влияние: повышает жизненный тонус, усиливает стойкость организма к инфекционным заболеваниям. Недостаток УФР приводит к патологическим явлениям, которые получили название УФ недостаточности или УФ голодания и проявляются в недостатке витамина Э, что ведет к нарушению фосфорно-кальциевого обмена в организме.

Избыток УФР может привести к очень серьезным последствиям: образованию рака кожи, развитию других онкологических образований, появлению фотокератита («снежная слепота»), фотоконъюнктивита и даже катаракты; нарушению иммунной системы живых организмов, а также мутагенным процессам в растениях; изменению свойств и разрушению полимерных материалов, широко использующихся в строительстве и архитектуре. Например, УФР может обесцвечивать фасадные краски или приводить к механическому разрушению полимерных отделочных и конструктивных строительных изделий.

Архитектурно-строительное значение солнечной радиации. Данные о солнечной энергии используются при расчете теплового баланса зданий и систем отопления и кондиционирования воздуха, при анализе процессов старения различных материалов, учете влияния радиации на тепловое состояние человека, выборе оптимального породного состава зеленых насаждений для озеленения конкретного района и многих других целей. Солнечная радиация определяет режим естественной освещенности земной поверхности, знание которого необходимо при планировании расхода электроэнергии, проектировании различных сооружений и организации работы транспорта. Таким образом, радиационный режим является одним из ведущих градостроительных и архитектурно-строительных факторов.

Инсоляция зданий - одно из важнейших условий гигиеничности застройки, поэтому облучению поверхностей прямыми солнечными лучами уделяют особое внимание как важному экологическому фактору. При этом Солнце оказывает не только гигиеническое воздействие на внутреннюю среду, убивая болезнетворные организмы, но и психологически влияет на человека. Эффект такого облучения зависит от длительности процесса воздействия солнечных лучей, поэтому инсоляцию измеряют в часах, а ее продолжительность нормируют соответствующими документами Минздрава России.

Необходимый минимум солнечной радиации, обеспечивающий комфортные условия внутренней среды зданий, условия для труда и отдыха человека, складывается из требуемой освещенности жилых и рабочих помещений, количества требуемой для организма человека ультрафиолетовой радиации, количества поглощенного наружными ограждениями и переданного внутрь зданий тепла, обеспечивающего тепловой комфорт внутренней среды. Исходя из этих требований принимаются архитектурно-планировочные решения, определяется ориентация жилых комнат, кухонь, подсобных и рабочих помещений. При избытке солнечной радиации предусматривается устройство лоджий, жалюзи, ставень и других солнцезащитных устройств.

Анализ сумм солнечной радиации (прямой и рассеянной), поступающей на различно ориентированные поверхности (вертикальные и горизонтальную), рекомендуется проводить по следующей шкале:

  • менее 50 кВт ч/м 2 в мес - незначительная радиация;
  • 50-100 кВт ч/м 2 в мес - средняя радиация;
  • 100-200 кВт ч/м 2 в мес - высокая радиация;
  • более 200 кВт ч/м 2 в мес - избыточная радиация.

При незначительной радиации, наблюдающейся в умеренных широтах в основном в зимние месяцы, ее вклад в тепловой баланс зданий настолько мал, что им можно пренебречь. При средней радиации в умеренных широтах происходит переход в область отрицательных значений радиационного баланса земной поверхности и расположенных на ней зданий, сооружений, искусственных покрытий и т.д. В связи с этим они в суточном ходе начинают терять больше тепловой энергии, чем получают тепла от солнца днем. Эти потери в тепловом балансе зданий не покрываются за счет внутренних источников тепла (электроприборов, труб горячего водоснабжения, метаболического тепловыделения людей И Т.Д.), и их необходимо компенсировать за счет работы отопительных систем - начинается отопительный период.

При высокой радиации и при реальных условиях облачности тепловой фон территории городской застройки и внутренней среды зданий находится в зоне комфорта без использования искусственных систем обогрева и охлаждения.

При избыточной радиации в городах умеренных широт, особенно тех, которые расположены в умеренном континентальном и резко континентальном климате, летом может наблюдаться перегрев зданий, их внутренней и наружной среды. В связи с этим перед архитекторами встает задача по защите архитектурной среды от избыточной инсоляции. Применяют соответствующие объемно-планировочные решения, выбирают оптимальную ориентацию зданий по сторонам горизонта, архитектурные солнцезащитные элементы фасадов и светопроемов. Если архитектурных средств по защите от перегрева оказывается недостаточно, то возникает необходимость искусственного кондиционирования внутренней среды зданий.

Радиационный режим также влияет на выбор ориентации и размеров светопроемов. При низкой радиации размер светопроемов может быть увеличен до любых размеров при условии сохранения теплопотерь через наружные ограждения на уровне не выше нормативного. При избыточной радиации светопроемы делаются минимальными по размерам, обеспечивающими требования по инсоляции и естественной освещенности помещений.

Светлота фасадов, определяющая их отражательную способность (альбедо), также выбирается исходя из требований солнцезащиты или, наоборот, с учетом возможности максимального поглощения солнечной радиации в районах с прохладным и холодным влажным климатом и со средним или незначительным уровнем солнечной радиации в летние месяцы. Для выбора облицовочных материалов, исходя из их отражающей способности, необходимо знать, какое количество солнечной радиации поступает к стенам зданий различной ориентации и какова способность различных материалов поглощать эту радиацию. Поскольку приход радиации к стене зависит от широты места и того, как ориентирована стена по отношению к сторонам горизонта, то от этого и будет зависеть нагрев стены и температура внутри примыкающих к ней помещений.

Поглощающая способность различных материалов отделки фасадов зависит от их цвета и состояния (табл. 1.10). Если известны месячные суммы солнечной радиации, поступающей на стены различной ориентации 1 и альбедо этих стен, то можно определить количество поглощенного ими тепла.

Таблица 1.10

Поглощающая способность строительных материалов

Данные о количестве приходящей солнечной радиации (прямой и рассеянной) при безоблачном небе на вертикальные поверхности различной ориентации приводятся в СП «Строительная климатология».

Наименование материала и обработка

Характеристика

поверхности

поверхности

Поглощенная радиация,%

Бетонная ошту-катуренная

Шероховатая

Светло-голубой

Темно-серый

Голубоватый

Отесанная

Желтовато-

коричневый

Полированная

Чисто отесанная

Светло-серый

Отесанная

Кровля

Рубероид

коричневый

Оцинкованная сталь

Светло-серый

Черепица

Подбирая соответствующие материалы и цвета для ограждающих конструкций зданий, т.е. меняя альбедо стен, можно изменять величину радиации, поглощаемую стеной и, таким образом, уменьшать или увеличивать нагрев стен солнечным теплом. Этот прием активно используется в традиционной архитектуре различных стран. Всем известно, что южные города отличаются общей светлой (белой с цветным декором) окраской большинства жилых домов, в то время как, например, скандинавские города - это в основном города, построенные из темного кирпича или с использованием для обшивки зданий теса с темной окраской.

Подсчитано, что 100 кВт ч/м 2 поглощенной радиации повышают температуру наружной поверхности примерно на 4°С. Такое количество радиации в среднем за час получают стены зданий в большинстве районов России, если они ориентированы на юг и восток, а также западные, юго-западные и юго-восточные, если они сделаны из темного кирпича и не оштукатурены или имеют штукатурку темного цвета.

Для перехода от средней за месяц температуры стены без учета радиации к наиболее часто употребляемой в теплотехнических расчетах характеристике - температуре наружного воздуха вводится дополнительная температурная добавка At, зависящая от месячного количества поглощаемой стеной солнечной радиации В к (рис. 1.15). Таким образом, зная интенсивность суммарной солнечной радиации, приходящей к стене, и альбедо поверхности этой стены, можно рассчитать ее температуру, вводя соответствующую поправку к температуре воздуха.

В к, кВт ч/м 2

Рис. 1.15. Увеличение температуры наружной поверхности стены за счет поглощения солнечной радиации

В общем случае температурная добавка за счет поглощенной радиации определяется при прочих равных условиях, т.е. при той же температуре воздуха, его влажности и термическом сопротивлении ограждающей конструкции, независимо от скорости ветра.

При ясной погоде в полуденные часы южные, до полудня - юго-восточные и после полудня - юго-западные стены могут поглощать до 350-400 кВт ч/м 2 солнечного тепла и нагреваются так, что их температура на 15-20°С может превышать температуру наружного воздуха. При этом создаются большие температурные кон-

трасты между стенами одного и того же здания. Эти контрасты в некоторых районах оказываются существенными не только летом, но и в холодное время года при солнечной маловетреной погоде, даже при очень низкой температуре воздуха. Особенно сильному перегреву подвергаются металлические конструкции. Так, по имеющимся наблюдениям, в Якутии, расположенной в умеренном резко континентальном климате, характеризующимся малооблачной погодой зимой и летом, в полуденные часы при ясном небе алюминиевые части ограждающих конструкций и кровля Якутской ГЭС нагреваются на 40-50°С выше температуры воздуха, даже при низких значениях последней.

Перегрев инсолируемых стен за счет поглощения солнечной радиации необходимо предусматривать уже на стадии архитектурного проектирования. Этот эффект требует не только защиты стен от избыточной инсоляции архитектурными методами, но и соответствующих планировочных решений зданий, применения различных по мощности систем отопления для различно ориентированных фасадов, закладки в проект швов для снятия напряжения в конструкциях и нарушения герметичности стыков из-за их температурных деформаций и т.д.

В табл. 1.11 в качестве примера приводятся месячные суммы поглощенной солнечной радиации в июне для нескольких географических объектов бывшего СССР при заданных значениях альбедо. Из этой таблицы видно, что если альбедо северной стены здания 30%, а южной - 50%, то в Одессе, Тбилиси и Ташкенте они будут нагреваться в одинаковой степени. Если в северных районах альбедо северной стены снизить до 10%, то она получит тепла почти в 1,5 раза больше, чем стена с альбедо 30%.

Таблица 1.11

Месячные суммы солнечной радиации, поглощаемой стенами зданий в июне при различных значениях альбедо (кВт ч/м 2)

В приведенных выше примерах, основанных на данных о суммарной (прямой и рассеянной) солнечной радиации, содержащихся в СП «Строительная климатология» и климатических справочниках, не учтена отраженная от земной поверхности и окружающих предметов (например, существующей застройки) солнечная радиация, поступающая на различные стены зданий. Она меньше зависит от их ориентации, поэтому в нормативных документах по строительству и не приводится. Однако эта отраженная радиация может быть достаточно интенсивной и по мощности сопоставимой с прямой или рассеянной радиацией. Поэтому при архитектурном проектировании ее необходимо учитывать, рассчитывая для каждого конкретного случая.

ЗАДАЧА-ВИЭ

Как определяется полное количество энергии, излучаемое 1 м 2 поверхности в 1 сек.ОТВЕТКак определяется полное количество энергии, излучаемое 1 м 2 поверхности в 1 сек Е (Т) = аТ 4

где а = 5,67·10 -8 Вт/(м 2 К 4), Т - абсолютная температура абсолютно черного тела по шкале Кельвина.Эта закономерность называется законом излучения Стефана-Болъцмана.Она была установлена еще в прошлом веке на основе многочисленных экспериментальных наблюдений и Стефаном, теоретически обоснована Л. Больцманом, исходя из классических законов термодинамики и электродинамики равновесного излучения, а впоследствии, в начале нашего столетия было выяснено, что эта закономерность вытекает из квантового закона распределения энергии в спектре равновесного излучения, выведенного М. Планком.

Расчетная методика для определения длина волны λ m , на которую приходится максимум энергии излучения абсолютно черного телаСогласно закону смещения Вина, длина волны λ m , на которую приходится максимум энергии излучения абсолютно черного тела, обратно пропорциональна абсолютной температуре T :

Закон распределения спектральной мощности излучения абсолютно черным телом был ус­тановлен Планком, называется он поэтому законом излучения Планка. Этот закон устанавливает,что мощность излучения в единичном интервале длин волн определяется температурой Т абсолютно черного тела: Причем, Вывод этой формулы помимо предположения о термодинамической равновесности излучения основывается на квантовой его природе, т. е. энергия излучения суммируется из энергии отдельных квантов с энергией Е ч =hv. Заметим, что представляет полную энергию, излучаемую единицей поверхности абсолютно черного тела в телесный угол 2π за 1 сек, во всем интервале частот, и она совпадает с закономерностью Стефана-Больцмана

Расчетная методика для определения оптическую массу пройденное прямыми солнечными лучами через атмосферуРасстояние , пройденное прямыми солнечными лучами через атмосферу, зависит от угла падения (зенитного угла) и высоты расположения наблюдателя над уровнем моря.Мы предполагаем наличие ясного неба без облаков, пыли или загрязнений воздуха. Так как верхняя граница атмосферы точно не определена, более важным фактором, чем пройденное расстояние, является взаимодействие излучения с атмосферными газами и парами.Прямой поток, нормально проходящий сквозь атмосферу при нормальном давлении, взаимодействует с определенной массой воздуха. Увеличение длины пути при наклонном падении луча.

Прямой поток, нормально проходящий сквозь атмосферу при нормальном давлении, взаимодействует с определенной массой воздуха. Увеличение длины пути при наклонном падении луча.

Оптическая масса m = secθ z :1-длина пробега, увеличеннаяна коэффициент т ; 2-нормальное падениеПод углом θ z , по сравнению с путем при нормальном падении, называется оптической массой и обозначается символом т. Из рисунка без учета кривизны земной поверхности получаем m=secθ z .

Расчетная методика для определенияинтенсивность космического солнечного излучения (солнечная постоянная) S o , полученная от СолнцаЕсли радиус Земли R, а интенсивность космического солнечного излучения (солнечная постоянная) S o , то полученная от Солнца энергия составляет πR 2 (1 - ρ 0)So. Эта энергия равна энергии, излучаемой в космическое пространство Землей с излучательной способностью ε = 1 и средней температурой Т е , Следовательно .

Спектральное распределение длинноволнового излучения поверхности Земли, наблюдаемого из космоса, примерно соответствует спектральному распределению абсолютно черного тела при температуре 250 К.Излучение атмосферы распространяется как к поверхности Земли, так и в противоположном направлении. Эффективная температура черного тела Земли как излучателя эквивалентна температуре, с которой излучают внешние слои атмосферы, а не поверхность Земли.

Расчетная методика для определенияпоток и плотности лучистой энергии солнцаВ метеорологии потоки лучистой энергии подразделяются на коротковолновую радиацию с длинами волн от 0,2 до 5,0 мкм и длинноволновую радиацию с длинами волн от 5,0 до 100 мкм. Потоки коротковолновой солнечной радиации подразделяются на:- прямые;

- рассеянные(диффузнные);- суммарные.Солнечной энергией W- называют энергию, переносимую электромагнитными волнами.Единицей энергии излучения W в международной системе единиц СИ является 1 джоуль.Лучистый поток Ф э - который определяется формулой: Ф э =W/t,

где W - энергия излучения за время t.

Полагая W=1 Дж, t=1 с, получим: 1 СИ (Ф э)=1 Дж/1 сек=1 Вт.Плотность лучистого потока излучения (поток радиации I) который определяется формулой:где Ф э - поток излучения, равномерно падающий на поверхность S.

Полагая Ф э =1 Вт, S=1 м 2 , находим: 1 СИ (Е э)=1 Вт/ 1 м 2 =1 Вт/м 2 .

Расчетная формула прямая и суммарная солнечная радиация

Прямая солнечная радиация-I п представляет собой поток излучения, поступающего от солнечного диска и измеряемого в плоскости, перпендикулярной солнечным лучам. Прямая радиация, приходящая на горизонтальную поверхность (S "), вычисляется по формуле:

S " = I п sin h, где h - высота солнца над горизонтом. Для измерения прямой солнечной радиации используется актинометр Савинова-Янишевского.Рассеянной солнечной радиацией (D)- называется радиация, поступающая на горизонтальную поверхность от всех точек небесного свода, за исключением диска Солнца и околосолнечной зоны радиусом 5 0 , в результате рассеяния солнечной радиации молекулами атмосферных газов, водяными каплями или ледяными кристаллами облаков и твердыми частицами, взвешенными в атмосфере. Суммарная солнечная радиация Q- включает излучение, падающее на горизонтальную плоскость, двух видов: прямое и диффузное. Q = S " + D (4.7)Дошедшая до земной поверхности суммарная радиация в большей своей части поглощается в верхнем, тонком слое почвы или воды и переходит в тепло, а частично отражается.

Определите основных точек небесной сферыНебесная сфера – это воображаемая сфера произвольного радиуса. Центр ее в зависимости от решаемой задачи совмещают с той или иной точкой пространства. Отвесная линия пересекает поверхность небесной сферы в двух точках: в верхней Z – зените – и в нижней Z" – надир Основные точки и круги на небесной сфере

Определите Небесные координаты солнцаОсновными кругами, относительно которых определяется место Солнца (светила), являются истинный горизонт и небесный меридиан- координатами являются высота Солнца (h) и его азимут (A) .Кажущееся положение Солнца в любой точке Земли определяется двумя этими углами Горизонтальная система координатВысота h Солнца над горизонтом уголмежду направлением на Солнце из точки наблюдения и горизонтальной плоскостью, проходя­щей через эту точку.Азимут А Солнца - угол между плоскостью меридиана и вертикальной плоскостью, проведенной через точку наблюдения и Солнце.Зенитный уголZ - угол между направлением в зенит (Z) и направлением на Солнце. Этот угол является дополнительным к высоте солнцестояния h + z = 90. Когда Земля обращена к Солнцу южной стороной, азимут равен нулю, а высота максимальна. Отсюда вытекает понятие полдень, которое принято за начало времени отсчета дня (или второй половины суток).

Расчетная методика для определения угловое солнечное время (часовой угол Солнца)Угловое солнечное время(часовой угол Солнца) τ - представляет собой угловое смещение Солнца от полудня (1 ч соответствует π/12 рад , или 15 ° углового смещения). Смещение на Восток от Юга (т. е. утреннее значение) считается положительным.Часовой угол Солнца τ меняется между плоскостями местного меридиана и Солнечного меридиана. Один раз каждые 24 ч Солнце попадает в меридиональную плоскость.Вследствие суточного вращения Земли часовой угол τ изменяется в течение суток от 0 до 360 o или 2π рад (радиан), за 24 часа, таким образом, Земля, двигаясь по Орбите, вращается вокруг своей оси с угловой скоростью Если принять солнечное время от истинного полудня, соответствующего моменту прохождения Солнца через плоскости местного меридиана, то можно записать: ,град или рад

Расчетная методика для определениясклонение СолнцаСклонение Солнца - угол между направлением к Солнцу и экваториальной плоскостью называется склонением δ и является мерой сезонных изменений. Склонение обычно выражают в радианах (или градусах) к Северу или Югу от экватора. Измеряется от 0° до 90° (положительное значение к северу от экватора, отрицательное - к югу).Земля обращается вокруг Солнца за год. Направление земной оси остается фиксированным в пространстве под углом δ 0 = 23,5° к нормали к плоскости вращения,В северном полушарии δ плавно меняется от δ 0 = + 23,5° в период летнего солнцестояния до δ 0 =-23,5° в период зимнего солнцестояния.Аналитически получен град

где п - день года (n = 1 соответствует 1 января).В точках равноденствия δ = 0 , а точки восхода и захода Солнца располагаются строго на линии В-З горизонта.Таким образом, траектория Солнца по небесной сфере не является замкнутой кривой, а представляет собой своеобразную сферическую спираль, набивающуюся на боковую поверхность сферы в пределах полосы - .

В течение летнего полугодия с 21 марта по 23 сентября и Солнце находится выше плоскости экватора в северной небесной полусфере. В течение зимнего полугодия с 23 сентября по 21 марта и Солнце находится ниже плоскости экватора в южной небесной полусфере.

Зональное распределение солнечной радиации у земной поверхности.

До земной поверхности солнечная радиация доходит ослабленной атмосферным поглощением и рассеянием. Кроме того, в атмосфере всегда есть облака, и прямая солнечная радиация часто не достигает земной поверхности, поглощаясь, рассеиваясь и отражаясь обратно облаками. Облачность может уменьшать приток прямой радиации в широких пределах. Например, в зоне пустыни теряется вследствие наличия облаков всего 20% прямой солнечной радиации. Но в муссонном климате потеря прямой радиации вследствие облачности составляет 75%. В Петербурге, даже в среднем за год, облака не пропускают к земной поверхности 65% прямой радиации.

Распределение прямой солнечной радиации по Земному шару носит сложный характер, так как степень прозрачности атмосферы и условия облачности весьма изменчивы в зависимости от географической обстановки. Наибольший приток прямой радиации летом не в полярных широтах, как на границе атмосферы, а под 30-40° широты. В полярных широтах слишком велико ослабление радиации вследствие небольших высот солнца. Весной и осенью максимум прямой радиации не у экватора, как на границе атмосферы, а на 10-20° весной и на 20-30° осенью: у экватора слишком велика облачность. Только зимой данного полушария приэкваториальная зона получает радиации на земную поверхность, так же как и на верхнюю границу атмосферы, больше, чем все другие зоны.

Величины рассеянной радиации в общем меньше, чем прямой, но порядок величин тот же. В тропических и средних широтах величина рассеянной радиации - от половины до двух третей прямой радиации; под 50-60° широты она уже близка к прямой, а в высоких широтах (60-90°) рассеянная радиация почти весь год больше прямой. Летом приток рассеянной радиации в высоких широтах больше, чем в других зонах северного полушария.

Географическое распределение суммарной радиации

Рассмотрим распределение годовых и месячных количеств (сумм) суммарной радиации по Земному шару. Мы видим, что оно не вполне зонально: изолинии радиации на картах не совпадают с широтными кругами. Отклонения эти объясняются тем, что на распределение радиации по Земному шару оказывают влияние прозрачность атмосферы и облачность. Годовые количества суммарной радиации составляют в тропических и субтропических широтах свыше 140 ккал/см2. Они особенно велики в малооблачных субтропических пустынях, а в северной Африке достигают 200-220 ккал/см2. Зато над приэкваториальными лесными областями с их большой облачностью (над бассейнами Амазонки и Конго, над Индонезией) они снижены до 100-120 ккал/см2. К более высоким широтам обоих полушарий годовые количества суммарной радиации убывают, достигая под 60° широты 60-80 ккал/см2. Но затем они снова растут - мало в северном полушарии, но весьма значительно над малооблачной и снежной Антарктидой, где в глубине материка они достигают 120-130 ккал/см2, т. е. величин, близких к тропическим и превышающих экваториальные. Над океанами суммы радиации ниже, чем над сушей.

В декабре наибольшие суммы радиации, до 20-22 ккал/см2 и даже выше, в пустынях южного полушария. Но в облачных районах у экватора они снижены до 8-12 ккал/см2. В зимнем северном полушарии радиация быстро убывает на север; к северу от 50-й параллели она менее 2 ккал/см2 и несколько севернее полярного круга равна нулю. В летнем южном полушарии она убывает к югу до 10 ккал/см2 и ниже в широтах 50-60°. Но затем она растет - до 20 ккал/см2 у берегов Антарктиды и свыше 30 ккал/см2 внутри Антарктиды, где она, таким образом, больше, чем летом в тропиках.

В июне наивысшие суммы радиации, свыше 22 ккал/см2, над северо-восточной Африкой, Аравией, Иранским нагорьем. До 20 ккал/см2 и выше они в Средней Азии; значительно меньше, до 14 ккал/см2, в тропических частях материков южного полушария. В облачных приэкваториальных областях они, как и в декабре, снижены до 8-12 ккал/см2. В летнем северном полушарии суммы радиации убывают от субтропиков к северу медленно, а севернее 50° с. ш. возрастают, достигая 20 ккал/см2 и более в Арктическом бассейне. В зимнем южном полушарии они быстро убывают к югу, до нуля за южным полярным кругом.
(http://gisssu.narod.ru/world/wcl_txt.ht

Суммарная радиация- это сумма прямой (на горизонтальную поверхность) и рассеянной радиации:

Состав суммарной радиации т. е. соотношение между прямой и рассеянной радиацией, меняется в зависимости от высоты солнца, прозрачности атмосферы и облачности.

1. До восхода солнца суммарная радиация состоит полностью, а при малых высотах солнца-преимущественно из рассеянной радиации.

2. Чем прозрачнее атмосфера, тем меньше доля рассеянной радиации в составе суммарной.

3. В зависимости от формы, высоты и количества облаков доля рассеянной радиации увеличивается в разной степени. Когда солнце закрыто плотными облаками, суммарная радиация состоит только из рассеянной. При таких облаках рассеянная радиация лишь частично восполняет уменьшение прямой, поэтому увеличение количества и плотности облаков в среднем сопровождается уменьшением суммарной радиации. Но при небольшой или тонкой облачности, когда солнце совсем открыто или не полностью закрыто облаками, суммарная радиация за счет увеличения рассеянной может оказаться больше, чем при ясном небе,

Отражение солнечной радиации от земной поверхности

Суммарная радиация, приходящая на какую-либо поверхность, частично поглощается ею и частично отражается. Отношение количества солнечной радиации, отраженной данной поверхностью, к приходящей суммарной радиации называют отражательной способностью или альбедо: A=R K /Q

где Rк- поток отраженной радиации. Обычно альбедо выражают в долях единицы или в процентах.

Альбедо земной поверхности зависит от ее свойств и состояния: цвета, влажности, шероховатости, наличия и характера растительного покрова. Темные и шероховатые почвы отражают меньше, чем светлые и гладкие. Влажные почвы отражают меньше, чем сухие, так как они темнее. Следовательно, с возрастанием влажности почвы увеличивается поглощаемая ею доля суммарной радиации. Это оказывает большое влияние, например, на тепловой режим орошаемых полей.

Наибольшей отражательной способностью обладает свежевыпавший снег. В отдельных случаях альбедо снега достигает 87,%, а в Арктике и Антарктике-даже 98%. Слежавшийся, подтаявший и более загрязненный снег отражает гораздо меньше. Альбедо различных почв и растительного покрова различается сравнительно мало.

Альбедо естественных поверхностей несколько изменяется в течение суток, причем наибольшие альбедо отмечаются утром и вечером, а в дневные часы альбедо немного уменьшается. Объясняется это зависимостью спектрального состава суммарной радиации от высоты солнца и неодинаковой отражательной способностью одной и той же поверхности для разных длин волн. При малой высоте солнца в составе суммарной радиации увеличена доля рассеянной, а последняя отражается от шероховатой поверхности сильнее, чем прямая.

Альбедо водных поверхностей в среднем меньше, чем альбедо поверхности суши. Объясняется это тем, что солнечные лучи значительно глубже проникают в прозрачные для них верхние слои воды, чем в почву. В воде они рассеиваются и поглощаются. В связи с этим на альбедо воды влияет степень ее мутности: для загрязненной и мутной воды альбедо заметно возрастает по сравнению с чистой водой. Очень велика отражательная способность облаков: в среднем их альбедо составляет примерно 80 %.

Зная альбедо поверхности и суммарную радиацию, можно определить количество коротковолновой радиации, поглощенной данной поверхностью. Величина 1-А представляет собой коэффициент поглощения коротковолновой радиации данной поверхностью. Он показывает, какая часть суммарной радиации, приходящей на данную поверхность, ею поглощается.

Измерения альбедо больших областей земной поверхности и облаков осуществляются с искусственных спутников Земли. Сведения об альбедо облаков позволяют оценить их вертикальную протяженность, а знание альбедо моря дает возможность рассчитать высоту волн.

(Q) представляет собой совокупность прямой солнечной радиации, поступающей непосредственно от солнца, и рассеянной радиации (лучистой энергии, рассеянной облаками и самой ).

Суммарная радиация при безоблачном небе (возможная радиация) зависит от широты места, высоты солнца, характера подстилающей поверхности и прозрачности атмосферы, т.е. от содержания в ней аэрозолей и . Увеличение содержания аэрозолей приводит к снижению прямой радиации и увеличению рассеянной. Последнее происходит также при увеличении альбедо подстилающей поверхности. Доля рассеянной радиации в суммарной при безоблачном небе составляет 20–25 %.

Распределение по территории России месячных и годовых сумм суммарной радиации при безоблачном небе приведено в таблице в виде осредненных по широте значений.

Во все сезоны года суммы суммарной радиации возрастают с севера на юг в соответствии с изменением высоты солнца. Исключение составляет период с мая по июль, когда сочетание большой продолжительности дня и высоты солнца обеспечивает довольно высокие значения суммарной радиации на севере.

Для суммарной радиации при безоблачном небе характерно наличие более высоких значений в Азиатской части по сравнению с Европейской.

В условиях ясного неба суммарная радиация имеет простой суточный ход с максимумом в полдень. В годовом ходе максимум отмечается в июне - месяце наибольшей высоты солнца.

Месячный и годовой приход суммарной радиации при действительных условиях составляет лишь часть возможного, что является проявлением влияния облачности. Наибольшие отклонения реального месячного прихода от возможного отмечаются летом на Дальнем Востоке, где под влиянием муссона облачность снижает суммарную радиацию на 40–60%. В целом за год наибольшую долю от возможной суммарная радиация составляет в самых южных районах России - до 80%.

При наличии облачности суммарная радиация определяется не только количеством и формой облаков, но и состоянием солнечного диска. При открытом солнечном диске появление облачности приводит к увеличению суммарной радиации вследствие роста рассеянной. В отдельные дни рассеянная радиация может быть соизмерима с прямой. В этих случаях суточный приход суммарной радиации может превосходить радиацию при безоблачном небе.

В годовом ходе суммарной радиации определяющим является астрономический фактор, однако из-за влияния облачности максимальный приход радиации может наблюдаться не в июне, как это характерно для безоблачного неба, а в июле и даже в мае.


Буду благодарен, если Вы поделитесь этой статьей в социальных сетях: