Биологическая химия Лелевич Владимир Валерьянович

Глава 29. Водно-электролитный обмен

Распределение жидкости в организме

Для выполнения специфических функций клеткам необходима устойчивая среда обитания, включая стабильное обеспечение питательными веществами и постоянное выведение продуктов обмена. Основу внутренней среды организма составляют жидкости. На них приходится 60 – 65 % массы тела. Все жидкости организма распределяются между двумя главными жидкостными компартментами: внутриклеточным и внеклеточным.

Внутриклеточная жидкость – жидкость, содержащаяся внутри клеток. У взрослых на внутриклеточную жидкость приходится 2/3 всей жидкости, или 30 – 40 % массы тела. Внеклеточная жидкость – жидкость, находящаяся вне клеток. У взрослых на внеклеточную жидкость приходится 1/3 всей жидкости, или 20 – 25 % массы тела.

Внеклеточная жидкость подразделяется на несколько типов:

1. Интерстициальная жидкость – жидкость, окружающая клетки. Лимфа является интерстициальной жидкостью.

2. Внутрисосудистая жидкость – жидкость находящаяся внутри сосудистого русла.

3. Трансцеллюлярная жидкость, содержащаяся в специализированных полостях тела. К трансцеллюлярной жидкости относится спинномозговая, перикардиальная, плевральная, синовиальная, внутриглазная, а также пищеварительные соки.

Состав жидкостей

Все жидкости состоят из воды и растворенных в ней веществ.

Вода является основным компонентом человеческого организма. У взрослых мужчин вода составляет 60 % а у женщин – 55 % массы тела.

К факторам влияющим на количество воды в организме относятся.

1. Возраст. Как правило, количество воды в организме с возрастом уменьшается. У новорожденного количество воды составляет 70 % массы тела, в возрасте 6 – 12 месяцев – 60 %, у пожилого человека 45 – 55 %. Снижение количества воды с возрастом происходит вследствие уменьшения мышечной массы.

2. Жировые клетки. Содержат мало воды, поэтому количество воды в организма снижается с увеличением содержания жира.

3. Пол. Женский организм имеет относительно меньше воды, так как содержит относительно больше жира.

Растворенные вещества

В жидкостях организма содержатся два типа растворенных веществ – неэлектролиты и электролиты.

1. Неэлектролиты. Вещества, которые не диссоциируют в растворе и измеряются по массе (например мг на 100 мл). К клинически важным неэлектролитам относятся глюкоза, мочевина, креатинин, билирубин.

2. Электролиты. Вещества которые диссоциируют в растворе на катионы и анионы и их содержание измеряется в миллиэквивалент на литр [мэкв/л]. Электролитный состав жидкостей представлен в таблице.

Таблица 29.1. Основные электролиты жидкостных компартментов организма (приведены средние значения)

Содержание электролитов, мэкв/л Внеклеточная жидкость Внутриклеточная жидкость
плазма интерстициальная
Na + 140 140 10
K + 4 4 150
Ca 2+ 5 2,5 0
Cl - 105 115 2
PO 4 3- 2 2 35
HCO 3 - 27 30 10

Основными внеклеточными катионами являются Na + , Са 2+ , а внутриклеточными К + , Мg 2+ . Вне клетки преобладают анионы Сl - , НСО 3 - , а главным анионом клетки является РО 4 3- . Внутрисосудистая и интерстициальная жидкости имеют одинаковый состав, так как эндотелий капиляров свободно проницаем для ионов и воды.

Различие состава внеклеточной и внутриклеточной жидкостей обусловлено:

1. Непроницаемостью клеточной мембраны для ионов;

2. Функционированием транспортных систем и ионных каналов.

Характеристики жидкостей

Кроме состава, важное значение имеют общие характеристики (параметры) жидкостей. К ним относятся: объем, осмоляльность и рН.

Объем жидкостей.

Объем жидкости зависит от количества воды которая присутствует в данный момент в конкретном пространстве. Однако вода переходит пасивно, в основном за счет Na + .

Жидкости взрослого организма имеют объем:

1. Внутриклеточная жидкость – 27 л

2. Внеклеточная жидкость – 15 л

Интерстициальная жидкость – 11 л

Плазма – 3 л

Трансцеллюлярная жидкость – 1 л.

Вода, биологическая роль, обмен воды

Вода в организме находится в трех состояниях:

1. Конституционная (прочно связанная) воды, входит в структуру белков, жиров, углеводов.

2. Слабосвязанная воды диффузионных слоев и внешних гидратных оболочек биомолекул.

3. Свободная, мобильная вода, является средой в которой растворяются электролиты и ниэлектролиты.

Между связанной и свободной водой существует состояние динамического равновесия. Так синтез 1 г гликогена или белка требует 3 г Н 2 О которая переходит из свободного состояния в связанное.

Вода в организме выполняет следующие биологические функции:

1. Растворитель биологических молекул.

2. Метаболическая – участие в биохимических реакциях (гидролиз, гидратация, дегидратация и др.).

3. Структурная – обеспечение структурной прослойки между полярными группами в биологических мембранах.

4. Механическая – способствует сохранению внутриклеточного давления, формы клеток (тургор).

5. Регулятор теплового баланса (сохранение, распределение, отдача тепла).

6. Транспортная – обеспечение переноса растворенных веществ.

Обмен воды

Суточная потребность в воде для взрослого человека составляет около 40 мл на 1 кг массы или около 2500 мл. Время пребывания молекулы воды в организме взрослого человека составляет около 15 дней, в организме грудного ребенка – до 5 дней. В норме имеется постоянный баланс между поступлением и потерей воды (Рис. 29.1).

Рис. 29.1 Водный баланс (внешний водный обмен) организма.

Примечание. Потеря воды через кожу слагается из:

1. неощутимых потерь воды – испарение с поверхности кожи со скоростью 6 мл/кг массы/час. У новорожденных скорость испарения больше. Эти потери воды не содержат электролитов.

2. ощутимые потери воды – потоотделение, при котором теряется вода и электролиты.

Регуляция объема внеклеточной жидкости

Значительные колебания объема интерстициальной части внеклеточной жидкости могут наблюдаться без выраженного влияния на функции организма. Сосудистая часть внеклеточной жидкости менее устойчива к изменениям и должна тщательно контролироваться, чтобы ткани адекватно снабжались питательными веществами при одновременном непрерывном удалении продуктов метаболизма. Объем внеклеточной жидкости зависит от количества натрия в организме, поэтому регуляция объема внеклеточной жидкости связана с регуляцией обмена натрия. Центральное место в этой регуляции занимает альдостерон.

Альдостерон действует на главные клетки собирательных трубок, т. е. дистальную часть почечных канальцев – на тот участок в котором реабсорбируется около 90 % фильтруемого натрия. Альдостерон связывается с внутриклеточными рецепторами, стимулирует транскрипцию генов и синтез белков которые открывают натриевые каналы в апикальной мембране. В результате повышенное количество натрия входит в главные клетки и активирует Na + , К + - АТФазу базолатеральной мембраны. Усиленный транспорт К + в клетку в обмен на Na + приводит к повышенной секреции К + через калиевые каналы в просвет канальца.

Роль системы ренин-ангиотензин

Система ренин-ангиотензин играет важную роль в регуляции осмоляльности и объема внеклеточной жидкости.

Активация системы

При понижении артериального давления в приносящих артериолах почек если уменьшения содержания натрия в дистальных канальцах в гранулярных клетках юкстагломерулярного аппарата почек синтезируется и секретируется в кровь протеолитических фермент-ренин. Дальнейшая активация системы показана на рис. 29.2.

Рис. 29.2. Активация системы ренин-ангиотензин.

Предсердный натрийуретический фактор

Предсердный натриуретический фактор (ПНФ) синтезируется предсердиями (в основном правым). ПНФ является пептидом и выделяется в ответ на любые события, приводящие к увеличению объема или возрастанию давления накопления сердца. ПНФ в отличие от ангиотензина II и альдостерона снижает сосудистый объем и артериальное давление.

Гормон обладает следующими биологическими эффектами:

1. Повышает экскрецию почками натрия и воды (за счет усиления фильтрации).

2. Уменьшает синтез ренина и выброс альдостерона.

3. Снижает выброс АДГ.

4. Вызывает прямую вазодилатацию.

Нарушения водно-электролитного обмена и кислотно-основного равновесия

Обезвоживание.

Обезвоживание (дегидратация, водная недостаточность) ведет к умньшению объема внеклеточной жидкости-гиповолемии.

Развивается вследствие:

1. Аномальной потери жидкости через кожу, почки, желудочно-кишечный тракт.

2. Снижение поступления воды.

3. Перемещения жидкости в третье пространство.

Выраженное снижение объема внеклеточной жидкости может привести к гиповолемическому шоку. Продолжительная гиповлемия может вызвать развитие почечной недостаточности.

Различают 3 типа обезвоживания:

1. Изотоническое – равномерная потеря Na + и H 2 O.

2. Гипертоническое – недостаток воды.

3. Гипотоническое – недостаток жидкости с превалированием недостатка Na+.

В зависимости от типа потери жидкости дегидратация сопровождается снижением или повышением показателей осмоляльности, КОР, уровня Nа + и К + .

Отеки – одно из наиболее тяжелых нарушений водно-электролитного обмена. Отек – это избыточное накопление жидкости в интерстициальном пространстве, например на ногах или легочном интерстиции. При этом происходит набухание основного вещества соединительной ткани. Отечная жидкость всегда образуется из плазмы крови, которая в патологических условиях не в состоянии удерживать воду.

Отеки развиваются вследствие действия факторов:

1. Снижение концентрации альбуминов в плазме крови.

2. Повышение уровня АДГ, альдостерона вызывающее задержку воды, натрия.

3. Увеличение проницаемости капилляров.

4. Повышение капиллярного гидростатического давления крови.

5. Избыток или перераспределение натрия в организме.

6. Нарушение циркуляции крови (например сердечная недостаточность).

Нарушения кислотно-основного равновесия

Нарушения наступают при не способности механизмов поддержания КОР предотвращать сдвиги. Могут наблюдаться два крайних состояния. Ацидоз – повышения концентрации ионов водорода или потеря оснований приводящее к уменьшению рН. Алкалоз – возрастание концентрации оснований или снижение концентрации ионов водорода вызывающее увеличение рН.

Изменение рН крови ниже 7,0 или выше 8,8 вызывают смерть организма.

Три формы патологических состояний приводят к нарушению КОР:

1. Нарушение выведения углекислого года легкими.

2. Избыточная продукция кислых продуктов тканями.

3. Нарушения выведения оснований с мочой, фекалиями.

С точки зрения механизмов развития различают несколько типов нарушений КОР.

Дыхательный ацидоз – вызывается повышением рСО 2 выше 40мм. рт. ст за счет гиповентиляции при заболеваниях легких, ЦНС, сердца.

Дыхательный алкалоз – характеризуется снижением рСО 2 менее 40мм. рт. ст., является результатом повышения альвеолярной вентиляции и наблюдается при психическом возбуждении, заболеваниях легких (пневмонии).

Метаболический ацидоз – следствие первичного снижения бикарбоната в плазме крови, что наблюдается при накоплении нелетучих кислот (кетоацидоз, лактоацидоз), потере оснований (диарея), снижение экскреции кислот почками.

Метаболический алкалоз – возникает при увеличении уровня бикарбоната плазмы крови и наблюдается при потере кислого содержимого желудка при рвоте, использовании диуретиков, синдроме Кушинга.

Минеральные компоненты тканей, биологические функции

В организме человека обнаружено большинство элементов встречающихся в природе.

С точки зрения количественного содержания в организме их можно разделить на 3 группы:

1. Микроэлементы-содержание в организме более 10–2%. К ним относятся – натрий, калий, кальций, хлорид, магний, фосфор.

2. Микроэлементы – содержание в организме от 10–2% до 10–5%. К ним относятся – цинк, молибден, иод, медь и др.

3. Ультрамикроэлементы – содержание в организме менее 10–5%, например серебро, алюминий и др.

В клетках минеральные вещества находятся в виде ионов.

Основные биологические функции

1. Структурная – участвуют в формировании пространственной структур биополимеров и других веществ.

2. Кофакторная – участие в образовании активных центров ферментов.

3. Осмотическая – поддержание осмолярности и объема жидкостей.

4. Биоэлектрическая – генерация мембранного потенциала.

5. Регуляторная – ингибирование или активирование ферментов.

6. Транспортная – участие в переносе кислорода, электронов.

Натрий, биологическая роль, обмен, регуляция

Биологическая роль:

1. Поддержание водного баланса и осмоляльности внеклеточной жидкости;

2. Поддержание осмотического давления, объема внеклеточной жидкости;

3. Регуляция кислотно-основного равновесия;

4. Поддержание нервно-мышечной возбудимости;

5. Передача нервного импульса;

6. Вторично активный транспорт веществ через биологические мембраны.

В организме человека содержится около 100 гр натрия, который распределен преимущественно во внеклеточной жидкости. Натрий поступает с пищей в количестве 4–5 гр в сутки и всасывается в проксимальном отделе тонкой кишки. Т? (время полуобмена) для взрослых 11–13 суток. Выделяется натрий из организма с мочой (3,3 гр/сут), потом (0,9 гр/сут), калом (0,1 гр/сут).

Регуляция обмена

Основная регуляция обмена осуществляется на уровне почек. Они отвечают за экскрецию избытка натрия и способствуют его сохранению при недостатке.

Почечную экскрецию:

1. усиливают: ангиотензин-II, альдостерон;

2. уменьшает ПНФ.

Калий, биологическая роль, обмен, регуляция

Биологическая роль:

1. участие в поддержании осмотического давления;

2. участие в поддержании кислотно-основного равновесия;

3. проведение нервного импульса;

4. поддержание нервно-мышечного возбуждения;

5. сокращение мышц, клеток;

6. активация ферментов.

Калий – основной внутриклеточный катион. В организме человека содержится 140 г калия. С пищей ежесуточно поступает около 3–4 г калия, который всасывается в проксимальном отделе тонкой кишки. Т? калия – около 30 суток. Выводится с мочой (3 г/сут), калом (0,4 г/сут), потом (0,1 г/сут).

Регуляция обмена

Несмотря на небольшое содержание К + в плазме, его концентрация регулируется очень строго. Поступление К + в клетки усиливают адреналин, альдостерон, инсулин, ацидоз. Общий баланс К + регулируется на уровне почек. Альдостерон усиливает выделение К + за счет стимуляции секреции по калиевым каналам. При гипокалиемии регуляторные возможности почек ограничены.

Кальций, биологическая роль, обмен, регуляция

Биологическая роль:

1. структура костной ткани, зубов;

2. мышечное сокращение;

3. возбудимость нервной системы;

4. внутриклеточный посредник гормонов;

5. свертывание крови;

6. активация ферментов (трипсин, сукцинатдегидрогеназа);

7. секреторная активность железистых клеток.

В организме содержится около 1 кг кальция: в костях – около 1 кг, в мягких тканях, преимущественно внеклеточно – около 14 г С пищей поступает 1 г в сутки, а всасывается 0,3 г/сутки. Т? для кальция содержащегося в организме около 6 лет, для кальция костей скелета – 20 лет.

В плазме крови кальций содержится в двух видах:

1. недиффундируемый, связанный с белками (альбумином), биологически неактивный – 40 %.

2. диффундируемый, состоящий из 2-х фракций:

Ионизированный (свободный) – 50 %;

Комплексный, связанный с анионами: фосфатом, цитратом, карбонатом – 10 %.

Все формы кальция находятся в динамическом обратимом равновесии. Физиологической активностью обладает только ионизированный кальций. Кальций выделяется из организма: с калом – 0,7 г/сутки; с мочой 0,2 г/сутки; с потом 0,03 г/сутки.

Регуляция обмена

В регуляции обмена Са 2+ имеют значение 3 фактора:

1. Паратгормон – увеличивает выход кальция из костной ткани, стимулирует реабсорбцию в почках, и активируя превращение витамина D в его форму D 3 повышает всасывание кальция в кишечнике.

2. Кальцитонин – уменьшает выход Са 2+ из костной ткани.

3. Активная форма витамина D – витамин D 3 стимулирует всасывание кальция в кишечнике. В конечном итоге, действие паратгормона и витамина D направлено на повышение концентрации Са2+ во внеклеточной жидкости, в том числе в плазме, а действие кальцитонина – на понижение этой концентрации.

Фосфор, биологическая роль, обмен, регуляция

Биологическая роль:

1. образование (совместно с кальцием) структуры костной ткани;

2. строение ДНК, РНК, фосфолипидов, коферментов;

3. образование макроэргов;

4. фосфорилирование (активация) субстратов;

5. поддержание кислотно-основного равновесия;

6. регуляция метаболизма (фосфорилирование, дефосфорилирование белков, ферментов).

В организме содержится 650 г фосфора, из них в скелете – 8,5%, в клетках мягких тканей – 14%, во внеклеточной жидкости – 1 %. Поступает около 2 г в сутки, из которых всасывается до 70%. Т? кальция мягких тканей – 20 суток, скелета – 4 года. Выводится фосфор: с мочой – 1,5 г/сутки, с калом – 0,5 г/сутки, с потом – около 1 мг/сутки.

Регуляция обмена

Паратгормон усиливает выход фосфора из костной ткани и выведение его с мочой, а также увеличивает всасывание в кишечнике. Обычно концентрация кальция и фосфора в плазме крови изменяются противоположным образом. Однако не всегда. При гиперпаратиреоидизме повышаются уровни обоих, а при детском рахите снижаются концентрации обоих.

Эссенциальные микроэлементы

Эссенциальные микроэлементы – микроэлементы без которых организм не может расти, развиваться и совершать свой естественный жизненный цикл. К эссенциальным элементам относятся: железо, медь, цинк, марганец, хром, селен, молибден, иод, кобальт. Для них установлены основные биохимические процессы в которых они участвуют. Характеристика жизненно-важных микроэлементов приведена в таблице 29.2.

Таблица 29.2. Эссенциальные микроэлементы, краткая характеристика.

Микро-элемент Содержание в организме (в среднем) Основные функции
Медь 100 мг Компонент оксидаз (цитохромоксидаза), участие в синтезе гемоглобина, коллагена, иммунных процессах.
Железо 4,5 г Компонент гем-содержащих ферментов и белков (Hb, Mb и др.).
Йод 15 мг Необходим для синтеза гормонов щитовидной железы.
Кобальт 1,5 мг Компонент витамина В 12 .
Хром 15 мг Участвует в связывании инсулина с рецепторами клеточных мембран, образует комплекс с инсулином и стимулирует проявление его активности.
Марганец 15 мг Кофактор и активатор многих ферментов (пируваткиназа, декарбоксилазы, супероксиддисмутаза), участие в синтезе гликопротеинов и протеогликанов, антиоксидантное действие.
Молибден 10 мг Кофактор и активатор оксидаз (ксантиноксидаза, сериноксидаза).
Селен 15 мг Входит в состав селенопротеинов, глутатионпероксидазы.
Цинк 1,5 г Кофактор ферментов (ЛДГ, карбоангидраза, РНК и ДНК-полимеразы).
Из книги ЧЕЛОВЕК - ты, я и первозданный автора Линдблад Ян

Глава 14 Homo erectus. Развитие мозга. Зарождение речи. Интонации. Речевые центры. Глупость и ум. Смех-плач, их происхождение. Обмен информацией в группе. Homo erectus оказался весьма пластичным «прачеловеком»: за миллион с лишним лет своего существования он все время

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения (без иллюстраций) автора Волович Виталий Георгиевич

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения [с иллюстрациями] автора Волович Виталий Георгиевич

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

ОБМЕН УГЛЕВОДОВ Следует еще раз подчеркнуть, что процессы, происходящие в организме, представляют собой единое целое, и только для удобства изложения и облегчения восприятия рассматриваются в учебниках и руководствах в отдельных главах. Это относится и к разделению на

Из книги Рассказы о биоэнергетике автора Скулачев Владимир Петрович

Глава 2. Что такое энергетический обмен? Как клетка получает и использует энергию Чтобы жить, надо работать. Эта житейская истина вполне приложима к любым живым существам. Все организмы: от одноклеточных микробов до высших животных и человека - непрерывно совершают

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

16. Обмен веществ и превращение энергии. Энергетический обмен Вспомните!Что такое метаболизм?Из каких двух взаимосвязанных процессов он состоит?Где в организме человека происходит расщепление большей части органических веществ, поступающих с пищей?Обмен веществ и

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

7.6. Азотный обмен Азот, углерод, кислород и водород являются основообразующими химическими элементами, без которых (хотя бы в пределах нашей солнечной системы) не возникла бы жизнь. Азот в свободном состоянии обладает химической инертностью и является самым

Из книги Секреты наследственности человека автора Афонькин Сергей Юрьевич

Обмен веществ Наши болезни все те же, что и тысячи лет назад, но врачи подыскали им более дорогие названия. Народная мудрость - Повышенный уровень холестерина может наследоваться - Ранняя смертность и гены ответственны за утилизацию холестерина - Наследуется ли

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Глава 10. Энергетический обмен. Биологическое окисление Живые организмы с точки зрения термодинамики – открытые системы. Между системой и окружающей средой возможен обмен энергии, который происходит в соответствии с законами термодинамики. Каждое органическое

Из книги автора

Обмен витаминов Ни один из витаминов не осуществляет свои функции в обмене веществ в том виде, в котором он поступает с пищей. Этапы обмена витаминов:1. всасывание в кишечнике с участием специальных транспортных систем;2. транспорт к местам утилизации или депонирования с

Из книги автора

Глава 16. Углеводы тканей и пищи – обмен и функции Углеводы входят в состав живых организмов и вместе с белками, липидами и нуклеиновыми кислотами определяют специфичность их строения и функционирования. Углеводы участвуют во многих метаболических процессах, но прежде

Из книги автора

Глава 18. Обмен гликогена Гликоген – основной резервный полисахарид в животных тканях. Он представляет собой разветвленный гомополимер глюкозы, в котором остатки глюкозы соединены в линейных участках?-1,4-гликозидными связями, а в точках ветвления – ?-1,6- гликозидными

Из книги автора

Глава 20. Обмен триацилглицеролов и жирных кислот Приём пищи человеком происходит иногда со значительными интервалами, поэтому в организме выработались механизмы депонирования энергии. ТАГ (нейтральные жиры) – наиболее выгодная и основная форма депонирования энергии.

Из книги автора

Глава 21. Обмен сложных липидов К сложным липидам относят такие соединения, которые, помимо липидного, содержат и нелипидный компонент (белок, углевод или фосфат). Соответственно существуют протеолипиды, гликолипиды и фосфолипиды. В отличие от простых липидов,

Из книги автора

Глава 23. Обмен аминокислот. Динамическое состояние белков организма Значение аминокислот для организма в первую очередь заключается в том, что они используются для синтеза белков, метаболизм которых занимает особое место в процессах обмена веществ между организмом и

Из книги автора

Глава 26. Обмен нуклеотидов Практически все клетки организма способны к синтезу нуклеотидов (исключение составляют некоторые клетки крови). Другим источником этих молекул могут быть нуклеиновые кислоты собственных тканей и пищи, однако эти источники имеют лишь

Цены на Водно-электролитный обмен

Нарушения водно-электролитного баланса – одна из наиболее частых патологий, встречающихся в клинической практике. Количество воды в организме взаимосвязано с количеством Na (натрия) и регулируется нейрогуморальными механизмами: симпатической нервной системой, ренин-ангиотензин-альдостероновой системой, антидиуретическим гормоном, вазопрессином.

Натрий (Na) - основной катион внеклеточной жидкости, где его концентрация в 6-10 раз выше, чем внутри клеток. Натрий выделяется с мочой, калом, потом. Почечный механизм регуляции натрия – самый важный фактор в поддержании концентрации натрия в плазме.

Калий (K) - основной катион внутриклеточного пространства. Калий выделяется с мочой, и незначительное количество - с калом. Концентрация калия в сыворотке – показатель его общего содержания в организме. Калий играет важную роль в физиологических процессах сокращения мышц, в функциональной деятельности сердца, в проведении нервных импульсов, в обмене веществ.

Кальций (Са) общий и ионизированный . Около половины кальция циркулирует в ионизированной (свободной) форме; другая половина связана с альбумином и в виде солей – фосфаты, цитрат. Уровень ионизированного кальция - чрезвычайно стабильный показатель по сравнению с общим, который подвержен изменениям связывающих кальций факторов (например, альбумина). Уровень кальция регулируется паратиреоидным гормоном, кальцитонином и производными витамина D.

Фосфор (Р) в организме содержится в составе неорганических (фосфаты кальция, магния, калия и натрия) и органических (углеводы, липиды, нуклеиновые кислоты) соединений. Фосфор необходим для образования костей и энергетического обмена в клетках. Обмен фосфора тесно связан с обменом кальция. Примерно 40% неиспользованного фосфора выводится с калом, а остальное – с мочой. Основными факторами, регулирующими фосфорный обмен, являются паратиреоидный гормон, витамин D и кальцитонин.

Хлор (Cl) – основной внеклеточный анион, компенсирующий влияние катионов, в первую очередь, натрия во внеклеточной жидкости. Хлор в организме находится в ионизированном состоянии – в составе солей натрия, калия, кальция, магния. Он играет важную роль в поддержании кислотно-основного состояния, осмотического равновесия, баланса воды, участвует в образовании хлористоводородной кислоты желудочного сока. Обмен хлора регулируется гормонами коркового слоя надпочечников и щитовидной железы.

Магний (Mg) – играет важную роль в функционировании нервно-мышечного аппарата. Самое большое содержание магния - в миокарде. Физиологически он является антагонистом кальция. Основным регулятором поддержания концентрации магния в сыворотке крови являются почки. Избыток магния удаляется почками.

Показания

Повышение концентрации натрия имеет диагностическое значение при дегидратации (повышенной потере воды через дыхательные пути во время одышки, при лихорадке, трахеостоме, диарее); при солевой нагрузке на организм (при питании через гастростому, чрезмерном введении физиологического раствора); несахарном диабете, почечных заболеваниях, протекающих с олигонурией; гиперальдостеронизме (избыточная секреция альдостерона аденомой или опухолью надпочечника).

Снижение концентрации натрия имеет диагностическое значение при недостатке натрия в организме (острой почечной недостаточности, недостаточности коры надпочечников, обильном потоотделении с обильным питьем, ожогах, рвоте, диарее, пониженном поступлении натрия в организм); при гипергидратации (парентеральное поступление жидкости, дефицит кортизола, повышенная секреция вазопрессина, сердечная недостаточность).

Повышение концентрации калия имеет диагностическое значение при острой и хронической почечной недостаточности, острой дегидратации, обширных травмах, ожогах, тяжелом метаболическом алкалозе, шоке, хронической надпочечниковой недостаточности (гипоальдостеронизм), олигурии или анурии, диабетической коме. Повышение калия возможно при назначении калийсберегающих диуретиков (триамтерена, спиронолактона).

Снижение концентрации калия имеет диагностическое значение при: потере жидкости через желудочно-кишечный тракт (длительная рвота, диарея), метаболическом алкалозе, длительном лечении осмотическими диуретиками (маннитол, фуросемид), длительном применении стероидных препаратов, хронической почечной недостаточности, первичном гиперальдостеронизме.

Повышение концентрации общего кальция имеет диагностическое значение при: злокачественных новообразованиях, первичном гиперпаратиреозе, тиреотоксикозе, интоксикации витамином D, саркоидозе, туберкулезе, акромегалии, недостаточности функции надпочечников.

Снижение концентрации общего кальция имеет диагностическое значение при: почечной недостаточности, гипопаратиреозе, тяжелой гипомагниемии, остром панкреатите, некрозе скелетных мышц, распаде опухоли, дефиците витамина D.

Определение ионизированного кальция наиболее информативно при оценке быстрых изменений его концентраций, которые могут наблюдаться при переливании крови и кровезаменителей, при экстракорпоральном кровообращении, при диализе.

Повышение концентрации фосфора имеет диагностическое значение при: миеломной болезни, миелолейкозе, метастазах в кости, почечной недостаточности, гипопаратиреозе, диабетическом кетоацидозе, акромегалии, магниевой недостаточности, остром дыхательном алкалозе.

Снижение концентрации фосфора имеет диагностическое значение при: парентеральном питании, синдроме мальабсорбции, гиперпаратиреозе, гиперинсулинизме, остром алкоголизме, длительном применении препаратов алюминия, рахите, дефиците витамина D (остеомаляции), гипокалиемии, лечении диуретиками, кортикостероидами.

Повышение концентрации хлора имеет диагностическое значение при: нефрозах, нефритах, нефросклерозах, недостаточном поступлении воды в организм, декомпенсации заболеваний сердечно-сосудистой системы, развитии отеков, алкалозах, рассасывании экссудатов и транссудатов.

Снижение концентрации хлора имеет диагностическое значение при: повышенном выделении хлора (с потом в условиях жаркого климата, при диарее, при длительной рвоте), острой и хронической почечной недостаточности, нефротическом синдроме, крупозной пневмонии, метаболическом алколозе, диабетическом ацидозе, почечном диабете, заболеваниях надпочечников, неконтролируемой диуретической терапии.

Повышение концентрации магния имеет диагностическое значение при первичной гипофункции коры надпочечников, гипотиреозе, гепатитах, новообразваниях, остром диабетической кетоацидозе, почечной недостаточности, передозировке препаратов магния.

Снижение концентрации магния имеет диагностическое значение при: синдроме мальабсорбции, голодании, энтероколитах, язвенном колите, острой кишечной непроходимости, хроническом панкреатите, алкоголизме, гипертиреозе, первичном альдостеронизме, приеме диуретиков.

Методика

Определение общего кальция, магния и фосфора осуществляется на биохимическом анализаторе «Архитект 8000».

Определение ионизированных калия, натрия, кальция, хлора осуществляется на анализаторе «ABL800 Flex» для определения кислотно-щелочного, газового состава, электролитов и метаболитов крови.

Подготовка

Для определения ионизированных калия, натрия, кальция, хлора специальной подготовки к исследованию не требуется.

Для определения общего кальция, магния и фосфора в сыворотке крови необходимо воздержаться от физических нагрузок, приёма алкоголя и лекарств, изменений в питании в течение 24 часов до взятия крови. Рекомендуется сдавать кровь на исследование утром натощак (8-часовое голодание). В это время нужно воздержаться от курения. Желательно утренний приём лекарственных средств провести после взятия крови (если это возможно).

Не следует перед сдачей крови осуществлять следующие процедуры: инъекции, пункции, общий массаж тела, эндоскопию, биопсию, ЭКГ, рентгеновское обследование, особенно с введением контрастного вещества, диализ.

Если всё же была незначительная физическая нагрузка, нужно отдохнуть не менее 15 минут перед сдачей крови.

Очень важно, чтобы точно соблюдались указанные рекомендации, так как только в этом случае будут получены достоверные результаты исследования крови.

Нарушение водно-электролитного баланса в организме бывает в следующих ситуациях:

  • При гипергидратации – избыточном скоплении воды в организме и замедленном ее выделении. Жидкостная среда начинает накапливаться в межклеточном пространстве и из-за этого ее уровень внутри клетки начинает нарастать, и она набухает. Если гипергидратация задействует нервные клетки, то возникают судороги и возбуждаются нервные центры.
  • При дегидратации – недостатке влаги или обезвоживании кровь начинает сгущаться, из-за вязкости образуются тромбы и нарушается кровоток к тканям и органам. При ее недостатке в организме свыше 20% от массы тела наступает смерть.

Проявляется снижением массы тела, сухость кожного покрова, роговицы. При высоком уровне недостатка кожу можно собрать в складки, подкожная жировая клетчатка по консистенции похожа на тесто, глаза западают. Процент циркулирующей крови также сокращается, это проявляется в следующих симптомах:

  • обостряются черты лица;
  • цианоз губ и ногтевых пластин;
  • мерзнут руки и ноги;
  • снижается давление, пульс слабый и частый;
  • гипофункция почек, высокий уровень азотистых оснований в результате нарушения белкового обмена;
  • нарушение работы сердца, угнетение дыхания (по Куссмаулю), возможна рвота.

Часто фиксируется изотоническая дегидратация – вода и натрий теряются в равном соотношении. Подобное состояние распространено при острых отравлениях – необходимый объем жидкой среды и электролитов теряется при рвоте и диарее.

Код по МКБ-10

E87 Другие нарушения водно-солевого и кислотно-щелочного равновесия

Симптомы нарушения водно-электролитного баланса

Первые симптомы нарушения водно-электролитного баланса зависят от того, какой патологический процесс происходит в организме (гидратация, дегидратация). Это и повышенная жажда, и отеки, рвота, диарея. Часто отмечается измененный кислотно-щелочной баланс, низкое давление, аритмичное сердцебиение. Пренебрегать этими признакам нельзя, так как они приводят к остановке сердца и смерти, если врачебная помощь вовремя не оказана.

При недостатке кальция в крови появляются судороги гладких мышц, особенно опасен спазм гортани, крупных сосудов. При повышении содержания Са – боль в желудке, чувством жажды, рвотой, повышенным мочеотделением, торможению кровообращения.

Нехватка К проявляется атонией, алкалозом, ХПН, патологиями мозга, кишечной непроходимостью, фибрилляцией желудочков и другими изменениями сердечного ритма. Повышение содержания калия проявляется восходящим параличом, тошнотой, рвотой. Опасность этого состояния в том, что быстро развивается фибрилляция желудочков и остановка предсердий.

Высокий Mg в крови бывает при почечной дисфункции, злоупотреблении антацидами. Появляется тошнота, рвота, повышается температура, сердечный ритм замедляется.

Симптомы нарушения водно-электролитного баланса говорят о том, что описанные состояния требуют незамедлительной врачебной помощи, чтобы избежать еще более серьезных осложнений и летального исхода.

Диагностика нарушения водно-электролитного баланса

Диагностика нарушения водно-электролитного баланса при первичном поступлении проводится приблизительно, дальнейшее лечение завит от реакции организма на введение электролитов, противошоковых препаратов (в зависимости от тяжести состояния).

Необходимую информацию о человеке и состоянии его здоровья по факту госпитализации устанавливают:

  • По анамнезу. В ходе опроса (если больной в сознании) уточняются данные об имеющихся нарушениях водно-солевого обмена (язвенная болезнь, диарея, сужение привратника, некоторые формы язвенного колита, тяжелые кишечные инфекции, обезвоживание иной этиологии, асцит, диета с низким содержанием солей).
  • Установление степени обострения текущего заболевания и дальнейшие мероприятия по устранению осложнений.
  • Общий, серологический и бактериологический анализ крови, для выявления и подтверждения первопричины текущего патологического состояния. Также назначаются дополнительные инструментальные и лабораторные исследования для уточнения причины недомогания.

Своевременная диагностика нарушения водно-электролитного баланса дает возможность как можно скорее выявить степень тяжести нарушения и своевременно организовать подходящее лечение.

Лечение нарушения водно-электролитного баланса

Лечение нарушения водно-электролитного баланса должно проходить согласно такой схеме:

  • Устранить вероятность прогрессивного развития угрожающего жизни состояния:
    • кровотечение, острая потеря крови;
    • ликвидировать гиповолемию;
    • устранить гипер- или гипокалиемию.
  • Возобновить нормальный водно-солевой обмен. Наиболее часто для нормализации водно-солевого обмена назначают такие препараты: NaCl 0,9%, раствор глюкозы 5%, 10%, 20%, 40%, полиионные растворы (р-р Рингер-Локка, лактасол, р-р Хартмана и др.), эритроцитарную массу, полиглюкин, соду 4%, КCl 4%, CaCl2 10%, MgSO4 25% и др.
  • Предупредить вероятные осложнения ятрогенного характера (эпилепсию, сердечная недостаточность, особенно при введении препаратов натрия).
  • При необходимости, параллельно с внутривенным введением медикаментов проводить диетотерапию.
  • При внутривенном введении солевых растворов необходимо контролировать уровень ВСО, КОС, контролировать гемодинамику, следить за функцией почек.

Важный момент – до начала внутривенного введения солевых компонентов нужно рассчитать вероятную потерю жидкости и составить план восстановления нормального ВСО. Рассчитывают потерю по формулам:

Вода (ммоль) = 0,6 x Вес (кг) x (140/Na истинный (ммоль/л) + глюкоза/2 (ммоль/л)),

где 0,6 х Вес (кг) – количество воды в организме

140 – средний % Na (норма)

Na ист – иcтинная концентрация натрия.

Дефицит воды (л) = (Htист – HtN): (100 - HtN) х 0,2 x Вес (кг),

где 0,2 x Вес (кг) – объем внеклеточной жидкости

HtN = 40 у женского пола, 43 – у мужского.

  • Содержание электролитов - 0,2 x Вес x (Норма (ммоль/л) – истинное содержание (ммоль/л).

Профилактика нарушения водно-электролитного баланса

Профилактика нарушения водно-электролитного баланса заключается в поддержании нормального водно-солевого баланса. Солевой обмен может нарушаться не только при тяжелых патологиях (ожоги 3-4 степени, язвенная болезнь желудка, язвенные колиты, острая кровопотеря, пищевые интоксикации, инфекционные заболевания ЖКТ, психические расстройства, сопровождающиеся нарушением питания - булемия, анорексия и др.), но и при чрезмерном потоотделении, сопровождающимся перегреванием, систематическом бесконтрольном употреблении мочегонных препаратов, продолжительной бессолевой диете.

В профилактических целях стоит следить за состоянием здоровья, контролировать течение имеющихся заболеваний, способных спровоцировать солевой дисбаланс, не назначать себе самостоятельно лекарств, влияющих на транзит жидкости, восполнять необходимую суточную норму жидкости при условиях, близких к обезвоживанию, правильно и сбалансированно питаться.

Профилактика нарушения водно-электролитного баланса также заключается и в правильном рационе - употребление овсяной каши, бананов, куриной грудки, моркови, орехов, кураги, инжира, виноградного и апельсинового сока не только полезно само по себе, но и способствует поддержанию правильного баланса солей и микроэлементов.

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ им. акад. И. П. ПАВЛОВА

НАРУШЕНИЯ

ВОДНО-ЭЛЕКТРОЛИТНОГО ОБМЕНА

И ИХ ФАРМАКОЛОГИЧЕСКАЯ КОРРЕКЦИЯ

Учебно-методическое пособие

для студентов лечебного и стоматологического факультетов

Санкт-Петербург

д. м. н. проф. С. А. Шестакова

д. м. н. проф. А. Ф. Долгодворов

к. м. н. доцент А. Н. Кубынин

РЕДАКТОРЫ

д. м. н. проф. Н. Н. Петрищев

д. м. н. проф. Э. Э. Звартау

Нарушения водно-электролитного обмена и их фармакологическая коррекция: учеб. пособие / под ред. проф. Н. Н. Петрищева, проф. Э. Э. Звартау. - СПб. : СПбГМУ, 2005. - 91 с.

В данном учебно-методическом пособии рассматриваются вопросы физиологии и патофизиологии водно-электролитного обмена. Особое внимание уделено современным представлениям о механизмах нейрогормональной регуляции водно-электролитного обмена и их расстройствам, причинам и механизмам типовых нарушений водно-электролитного обмена, их клиническим проявлениям и принципам их коррекции с помощью современных способов и лечебных средств. В пособие включены новые сведения, появившиеся в последние годы и отсутствующие в учебных руководствах. Пособие рекомендовано студентам лечебного и стоматологического факультетов и представляет интерес для интернов, клинических ординаторов и врачей.

Оформление и верстка:

Панченко А. В., Шабанова Е. Ю.

© Издательство СПбГМУ, 2005.

Список условных обозначений

АД - артериальное давление

АДГ - антидиуретический гормон

АТФ - аденозинтрифосфат

АКТГ - адренокортикотропный гормон

АПФ - ангиотензин-превращающий фермент

АП-2 - аквапорин-2

АТ - ангиотензин

АТФаза - аденозинтрифосфатаза

АЦаза - аденилатциклаза

БАВ - биологические активные вещества

ВП - вазопрессин

ГК - глюкокортикостероиды

ГМК - гладкомышечные клетки

ДАГ - диацилглицерол

ЖКТ - желудочно-кишечный тракт

ИФ 3 -инозитол-3-фосфат

КОД - коллоидно-осмотическое (онкотическое) давление

КОС - кислотно-основное состояние

ОПН - острая почечная недостаточность

ОПС - общее периферическое сопротивление

ОЦК - объем циркулирующей крови

ПГ - простагландин(ы)

ПК А - протеинкиназа А

ПК С - протеинкиназа С

ПОЛ - перекисное окисление липидов

ПНУФ - предсердный натрийуретический фактор

РАС - ренин-ангиотензиновая система

РААС - ренин-ангиотензин-альдостероновая система

СВ - сердечный выброс

СНС - симпатическая нервная система

СТГ - соматотропный гормон

ФЛаза - фосфолипаза

ц-АМФ - циклическая аденозинмонофосфорная кислота

ЦВД - центральное венозное давление

ЦНС - центральная нервная система

ЦОГаза - циклооксигеназа

ЭКГ - электрокардиограмма

ЮГА - юкстагломерулярный аппарат

Hb - гемоглобин

Ht - гематокрит

Na + - натрий

К + - калий

Сa 2+ - кальций

Мg 2+ - магний

Р - фосфор


Список сокращений ................................................................................................... 3

Введение .......................................................................................................................... 6

Глава 1. Содержание и распределение воды и электролитов

в организме человека.................................................................................................... 6

Глава 2. Водный баланс организма. Этапы водно-электролитного обмена 11

Глава 3. Регуляция водно-электролитного обмена........................................... 17

Глава 4. Нарушения водного обмена. Причины, механизмы, проявления 32

4.1. Дегидратация................................................................................................. 33

4.1.1. Изоосмоляльная дегидратация......................................................... 33

4.1.2. Гиперосмоляльная дегидратация.................................................... 35

4.1.3. Гипоосмоляльная дегидратация...................................................... 38

4.2. Гипергидратация........................................................................................... 41

4.2.1. Гипоосмоляльная гипергидратация................................................ 42

4.2.2. Гиперосмоляльная гипергидратация.............................................. 45

4.2.3. Изоосмоляльная гипергидратация................................................... 48

4.3. Отек................................................................................................................... 50 50

Глава 5. Нарушения обмена электролитов......................................................... 55

5.1. Нарушения метаболизма натрия.............................................................. 55

5.2. Нарушения метаболизма калия................................................................ 58

5.3. Нарушения метаболизма кальция............................................................ 60

5.4. Нарушения метаболизма фосфора.......................................................... 64

5.5. Нарушения метаболизма магния.............................................................. 67

Глава 6. Фармакологическая коррекция нарушений водно-электролитного обмена 69

6.1. Основные направления инфузионной терапии..................................... 70

6.1.1. Восстановление адекватного ОЦК (волюмокоррекция)............ 71

6.1.2. Регидратация и дегидратация........................................................... 72

6.1.2.1. Лечение дегидратации................................................................ 72

6.1.2.2. Лечение гипергидратации.......................................................... 74

6.1.3. Нормализация электролитного баланса и кислотно-основного равновесия 76

6.1.3.1. Лечение нарушений кислотно-основного состояния......... 76

6.1.3.2. Лечение нарушений электролитного обмена....................... 76

6.1.4. Гемореокоррекция................................................................................ 79

6.1.5. Детоксикация......................................................................................... 80

6.1.6. Обменкорригирующие инфузии........................................................ 80

6.1.7. Другие возможности............................................................................ 81

6.2. Лекарственные средства, применяемые для коррекции нарушений водно-электролитного баланса 82

6.2.1. Гемодинамические средства.............................................................. 83

6.2.2. Кровезамещающие жидкости дезинтоксикационного действия 85

6.2.3. Электролитные растворы................................................................... 86

6.2.4. Препараты для парентерального питания..................................... 88

6.2.5. Обменкорригирующие растворы...................................................... 89

Литература ................................................................................................................... 90


ВВЕДЕНИЕ

Организм человека как открытая система теснейшим образом связан с окружающей его средой, взаимодействие с которой осуществляется в виде обмена веществ.

Как само существование организма человека, так и качество его жизнедеятельности зависят от степени адаптации к изменяющимся условиям обитания. Сформировавшиеся в процессе эволюции механизмы регуляции обмена веществ, в том числе водно-электролитного, направлены на поддержание гомеостаза организма и, в первую очередь, физико-химических параметров крови, из которых наиболее жестко контролируются осмоляльность и концентрация протонов (рН). Даже экстремальные факторы внешней среды, такие как факторы космического полета, не изменили средних значений осмоляльности сыворотки крови у космонавтов по сравнению с исходными величинами, несмотря на возросшую вариабельность этого показателя после приземления (Ю.В. Наточин, 2003).

Такой жесткий контроль осмоляльности внеклеточной жидкости (крови) обусловлен тяжелыми последствиями ее изменения для объема клеток в связи с перемещением воды из одного водного сектора в другой по градиенту осмоляльности. Изменение объема клеток чревато существенными нарушениями их метаболизма, функционального состояния, чувствительности и реактивности к различным биологическим активным веществам - регуляторам.

Многообразие изменений водно-электролитного обмена, наблюдаемое при различных патологических состояниях, укладывается в определенные типовые его нарушения, понимание общих закономерностей возникновения и развития которых является необходимым условием для проведения эффективной их коррекции.

ГЛАВА 1.

Вода является основным веществом, из которого состоит организм человека. Содержание воды в теле зависит от возраста, пола, массы тела (табл. 1). У здорового взрослого мужчины массой 70 кг общее содержание воды в организме составляет около 60% массы тела, т. е. 42 л. У женщин общее количество воды в организме приближается к 50% массы тела, т.е. меньше, чем у мужчин, что обусловлено большим содержанием бедной водой жировой ткани и меньшим - мышечной. У новорожденного ребенка содержание воды в теле достигает 80% массы тела и затем с возрастом постепенно уменьшается вплоть до старости. Это одно из проявлений старческой инволюции, зависящее от изменения свойств коллоидных систем (снижение cпособности молекул белков связывать воду) и от возрастного уменьшения клеточной массы, главным образом мышечной ткани. Общее содержание воды зависит также от массы тела: у тучных оно меньше, чем у лиц с нормальной массой тела, у худых - больше (табл. 1). Это связано с тем, что в жировой ткани воды значительно меньше, чем в тощих тканях (не содержащих жира).

Отклонение общего содержания воды в теле от средних значений в пределах 15% укладывается в рамки нормальных колебаний.

Таблица 1. Содержание воды в организме в зависимости от массы тела (в % к массе тела)

Таблица 2. Содержание воды в различных тканях и жидкостях организма человека

Распределение воды в различных органах и тканях человека неодинаково (табл. 2). Особенно много воды в клетках с высоким уровнем окислительного метаболизма, выполняющих специализированные функции, полностью свободных от жира (совокупность их составляет так называемую «клеточную массу» организма).

Вода выполняет важные функции в организме. Она является обязательной составной частью всех клеток и тканей, выступает в роли универсального растворителя органических и неорганических веществ. В водной среде протекает большинство химических реакций, т. е. процессов обмена веществ, лежащих в основе жизнедеятельности организма. Непосредственным участником некоторых из них, например, гидролиза ряда органических веществ, является вода. Она участвует в транспорте субстратов, необходимых для клеточного метаболизма, и выведении из организма вредных продуктов обмена веществ. Вода определяет физико-химическое состояние коллоидных систем, в частности дисперсность белков, что обуславливает их функциональные особенности. Поскольку химические и физико-химические процессы в организме осуществляются в водной среде, которая заполняет клеточное, интерстициальное и сосудистое пространства, можно считать, что вода является основным компонентом внутренней среды организма.

Вся вода человеческого тела распределена в двух основных пространствах (отсеках, секторах, компартментах): внутриклеточном (примерно 2/3 общего объема воды) и внеклеточном (примерно 1/3 общего ее объема), разделенных плазматическими мембранами клеток (рис. 1).

Рис. 1. Распределение воды в организме и пути ее поступления и выведения

Обозначения: ВнеКЖ - внеклеточная жидкость; ВКЖ - внутриклеточная жидкость; МКЖ - межклеточная (интерстициальная) жидкость; ПК - плазма крови; ЖКТ - желудочно-кишечный тракт

Внутриклеточная жидкость составляет 30–40% массы тела, т. е. ~27 л у мужчины массой тела 70 кг, и является основным компонентом внутриклеточного пространства.

Внеклеточная жидкость подразделяется на несколько типов: интерстициальную жидкость - 15%, внутрисосудистую (плазма крови) - до 5%, трансцеллюлярную жидкость - 0,5–1% массы тела.

Интерстициальная жидкость , окружающая клетки, вместе с водой лимфы составляет около 15–18% массы тела (~11–12 л) и представляет внутреннюю среду, в которой распределены клетки и от которой непосредственно зависит их жизнедеятельность.

Внутрисосудистая жидкость , или плазма крови (~3 л), является средой для форменных элементов крови. По составу она отличается от интерстициальной жидкости большим содержанием белка (табл. 3).

Трансцеллюлярная жидкость находится в специализированных полостях тела и полых органах (прежде всего в ЖКТ) и включает спинномозговую, внутриглазную, плевральную, внутрибрюшинную, синовиальную жидкости; секреты желудочно-кишечного тракта, жидкость желчевыводящих путей, полости капсулы клубочка и канальцев почки (первичная моча). Эти водные отсеки отделены от плазмы крови эндотелием капилляров и специализированным слоем эпителиальных клеток. Хотя объем трансцеллюлярной жидкости составляет ~1 л, значительно больший ее объем может перемещаться в трансцеллюлярное пространство или из него в течение суток. Так, ЖКТ в норме секретирует и реабсорбирует до 6–8 л жидкости ежедневно.

При патологии часть этой жидкости может обособляться в отдельный пул воды, не участвующий в свободном обмене («третье пространство»), например, скопившийся в серозных полостях экссудат или секвестрированная жидкость в ЖКТ при острой кишечной непроходимости.

Водные отсеки отличаются не только количеством, но и составом содержащейся в них жидкости. В биологических жидкостях все соли и большинство коллоидов находятся в диссоциированном состоянии, причем сумма катионов в них равна сумме анионов (закон электронейтральности).

Концентрацию всех электролитов в жидких средах организма можно выражать по способности ионов соединяться друг с другом в зависимости от электрической валентности - в миллиэквивалентах/литр (мэкв/л), и в этом случае количество катионов и анионов будет равным (табл. 3).

Концентрацию электролитов можно выразить по их массе - в граммах или миллимолях на литр (г/л, ммоль/л). В соответствии с международной системой единиц (СИ), количество веществ в растворах принято выражать в ммоль/л.

Распределение электролитов в различных жидкостях организма характеризуется постоянством и специфичностью состава (табл. 3). Ионный состав внутри- и внеклеточной жидкости различен. В первой основным катионом является К + , количество которого в 40 раз больше, чем в плазме; преобладают анионы фосфата (PO 4 3–) и белка. Во внеклеточной жидкости основной катион - Na + , анион - Cl – . Электролитный состав плазмы крови схож с таковым интерстициальной жидкости, отличаясь лишь по содержанию белка.

Таблица 3. Ионный состав и концентрация ионов (мэкв/л) в жидкостях различных отсеков организма человека (Д. Шейман, 1997)

Различия электролитного состава жидкостей организма являются результатом функционирования процессов активного транспорта, избирательной проницаемости барьеров между различными отсеками (гистогематический барьер и клеточные мембраны свободно проницаемы для воды и электролитов и непроницаемы для крупных белковых молекул) и клеточного метаболизма.

Электролиты и коллоиды обеспечивают адекватный уровень осмотического и коллоидно-осмотического (онкотического) давления и тем самым стабилизируют объем и состав жидкости в различных водных отсеках организма.

Глава 2.

Водный баланс организма.

Этапы водно-электролитного обмена

Суточная потребность в воде у здорового взрослого человека в среднем составляет 1,5 л на единицу площади поверхности тела (1500 мл/м 2) и колеблется от минимальной потребности - 700 мл/м 2 до максимальной толерантности 2700 мл/м 2 . Выраженная по отношению к массе тела потребность воды составляет около 40 мл/кг. Приводимые в литературе колебания в потребности воды (от 1 до 3 л) зависят от массы тела, возраста, пола, климатических условий, физической нагрузки. Повышение температуры на 1º С сопровождается дополнительной потребностью в жидкости, составляющей приблизительно 500 мл/м 2 поверхности тела за 24 часа.

В нормальных условиях количество поступающей в организм воды равно общему количеству выделяемой воды (табл. 4). Поступление воды в организм человека происходит в основном с пищей и питьем. В процессе метаболизма в организме образуется эндогенная, или метаболическая, вода. Окисление 100 г липидов сопровождается образованием 107 мл воды, 100 г углеводов - 55 мл, 100 г белков - 41 мл воды.

Таблица 4. Суточный водный баланс взрослого человека

Поступившая в организм вода после всасывания в кишечнике проходит определенный цикл, вступая в процессы перемещения и обмена между секторами организма , а также участвует в метаболических превращениях. При этом перемещение воды происходит довольно быстро и в больших объемах. У новорожденного ребенка за сутки обменивается около половины объема внеклеточной воды, у взрослого - около 15%. Весь цикл, который проходит поступившая в организм вода (плазма - клетки - биохимические процессы - плазма - выделение), у взрослого человека составляет около 15 дней, у детей - 5–6 дней.

Водные отсеки в организме человека отграничены полупроницаемыми мембранами, движение воды через которые зависит от разницы осмотического давления по обе стороны от мембраны. Осмос - движение воды через полупроницаемую мембрану из области низкой концентрации растворенного вещества в область с более высокой его концентрацией. Осмоляльность - мера способности раствора создавать осмотическое давление, действуя тем самым на движение воды. Она определяется количеством осмотически активных частиц в 1 кг растворителя (воды) и выражается в миллиосмолях на кг воды (мосм/кг). В клинике удобнее определять осмотическую активность биологических жидкостей в мосм/л, что соответствует понятию осмолярность (табл. 5). Поскольку биологические жидкости сильно разведены, численные значения их осмоляльности и осмолярности очень близки.

Таблица 5. Нормальные значения осмолярности биологических жидкостей человека

Осмолярность плазмы обусловлена в основном ионами Na + , Cl – и в меньшей степени гидрокарбоната (табл. 6).

Часть осмотического давления, производимая в биологических жидкостях коллоидами (белками), называют коллоидно-осмотическим (онкотическим) давлением (КОД). Оно составляет около 0,7% осмолярности плазмы, но имеет исключительно большое значение в связи с высокой гидрофильностью белков, особенно альбуминов, и неспособностью их свободно проходить через полупроницаемые биологические мембраны.

Эффективная осмоляльность, или тоничность, создается осмотически активными веществами, неспособными свободно проникать через плазматические мембраны клеток (глюкоза, Na + , маннитол).

Во внеклеточной жидкости (плазме) основными осмотически активными веществами являются ионы Na + и Cl – ; из неэлектролитов - глюкоза и мочевина. Остальные осмотически активные вещества в сумме обеспечивают менее 3% общей осмолярности (табл. 6). С учетом этого обстоятельства осмолярность плазмы рассчитывают по формуле

Р(мосм/л) = 2´Na + + K + ] + [глюкоза] + [мочевина] + 0,03[белок].

Получаемая величина лишь приблизительно соответствует истинной осмолярности, т. к. не учитывает вклад минорных компонентов плазмы. Более точные данные дает криоскопический метод определения осмолярности плазмы крови. В норме осмотическое давление во всех водных отсеках примерно одинаковое, поэтому величина осмолярности плазмы дает представление об осмолярности жидкостей и в других водных отсеках.

Таблица 6. Содержание компонентов плазмы взрослого человека и их роль в формировании ее осмолярности

Осмоляльность плазмы здорового человека колеблется в пределах 280–300 мосм/кг, что принимается за эталон сравнения в клинике. Растворы, имеющие тоничность в этих пределах, называют изотоническими, например, 0,9% (0,15 М) раствор NaCl. Гипертонические растворы имеют тоничность, превышающую осмоляльность плазмы (3% р-р NaCl), гипотонические растворыимеют тоничность ниже, чем у плазмы (0,45% р-р NaCl).

Повышение осмоляльности в каком-либо водном секторе может быть обусловлено увеличением содержания неэффективных осмотически активных веществ (легко проходящих через полупроницаемую мембрану), например, мочевины при уремии. Однако в этом случае мочевина свободно проходит в соседние отсеки, и гипертоничности в первом отсеке не развивается. Следовательно, не возникает перемещения воды в первый отсек из соседних с развитием в них дегидратации.

Таким образом, переход воды через полупроницаемые плазматические мембраны клеток определяется осмотическим градиентом , создаваемым эффективными осмотически активными веществами. При этом вода движется в сторону более высокой их концентрации до тех пор, пока тоничность жидкостей внеклеточного и внутриклеточного пространств не сравняется.

Поскольку тоничность определяет направление движения воды, то очевидно, что при снижении тоничности внеклеточной жидкости вода перемещается из внеклеточного пространства во внутриклеточное, вследствие чего объем клеток будет увеличиваться (клеточная гипергидратация). Это происходит при приеме больших количеств дистиллированной воды и нарушении ее выведения, либо при введении гипотонических растворов при инфузионной терапии. Напротив, при повышении тоничности внеклеточной жидкости вода перемещается из клеток во внеклеточное пространство, что сопровождается их сморщиванием. Такая картина наблюдается вследствие значительных потерь организмом воды или гипотонических жидкостей - например, при несахарном диабете, диарее, интенсивном потении.

Существенные изменения объема клеток влекут за собой нарушения их метаболизма и функций, наиболее опасные в головном мозгу из-за возможности сдавления клеток мозга, находящегося в жестко ограниченном пространстве, либо смещения мозга при сморщивании клеток. В связи с этим необходимое постоянство клеточного объема поддерживается за счет изотоничности цитоплазмы и интерстициальной жидкости. Имеющийся избыток в клетках высокомолекулярных анионов белка и других органических веществ, свободно не проходящих через мембрану, частично уравновешивается свободными катионами К + , концентрация которых в клетке выше, чем снаружи. Однако это не приводит к клеточной гипергидратации и последующему осмотическому лизису клеток благодаря постоянной работе К + /Na + АТФ-азы, обеспечивающей выведение из клетки Na + и возвращение вышедшего из нее К + против градиента концентрации катионов, на что затрачивается клеткой ≈30% энергии. В случае развития энергодефицита недостаточность транспортного механизма приведет к поступлению в клетку Na + и воды и развитию внутриклеточной гипергидратации, наблюдаемой в ранней стадии гипоксии.

Другой особенностью клеточных мембран человека является сохранение разности потенциалов между клеткой и окружающей средой, равной 80 мВ. Мембранный потенциал клетки определяется градиентом концентрации ионов К + (в 30–40 раз больше в клетке, чем снаружи) и Na + (в 10 раз больше во внеклеточной жидкости, чем в клетке). Мембранный потенциал - это логарифмическая функция соотношения K + , Na + ,Cl – во внутри- и внеклеточном пространствах. Если повышается проницаемость и активный транспорт через мембрану, возрастает гиперполяризация мембраны, т. е. накопление К + в клетке и выделение из нее Na + .

Для клинической практики важнее деполяризация мембраны. Вследствие нарушений активного транспорта и проницаемости мембраны происходит выход К + из клетки и поступление Na + , Н 2 О и ионов Н + в клетку, что приводит к внутриклеточному ацидозу. Это наблюдается при перитоните, шоке, уремии и других тяжелых состояниях.

Наибольшим колебаниям подвергается объем внеклеточной жидкости, которая постоянно перемещается между внутрисосудистым и интерстициальным пространствами посредством диффузии, фильтрации, реабсорбции и пиноцитоза через стенку обменных сосудов. У здорового человека за сутки из сосудов в ткани поступает до 20 л жидкости и столько же возвращается назад: через сосудистую стенку - 17 л и через лимфу - 3 л.

Обмен воды между внутрисосудистым и интерстициальным пространствами присходит в соответствии с постулатом Э. Старлинга о равновесии между гидростатическими и осмотическими силами по обе стороны стенки обменных сосудов.

Выведение из организма воды осуществляется рядом физиологических систем, из которых ведущая роль принадлежит почкам.

В образовании конечной мочи участвуют процессы ультрафильтрации в клубочках и реабсорбции, секреции и экскреции - в канальцах. Вследствие чрезвычайно интенсивной почечной перфузии (600 л крови за сутки) и селективной фильтрации, образуется 180 л гломерулярного ультрафильтрата. В проксимальных отделах канальцев из него реабсорбируется в среднем 80% натрия, хлоридов, калия и воды и почти полностью глюкоза, низкомолекулярные белки, большая часть аминокислот и фосфатов. В петле Генле и дистальных отделах нефрона происходят процессы концентрирования и разведения мочи, что обусловлено селективной проницаемостью различных отделов петли Генле и дистальных отделов нефрона для натрия и воды. Нисходящий отдел петли Генле высоко проницаем для воды и имеет относительно низкий уровень активного транспорта и пассивной проницаемости для Na Cl, который выходит в межклеточное пространство; восходящий отдел петли Генле непроницаем для воды, но обладает высокой способностью к транспорту Na, Cl, К, Са из просвета нефрона. Благодаря этому формируется значительный кортико-медуллярный осмотический градиент (900 мосм/л) и градиент между содержимым толстого восходящего отдела петли Генле и окружающей интерстициальной жидкостью (200 мосм/л). Примерно 50% осмоляльности интерстициальной жидкости обусловлено присутствием в ней мочевины.

Постоянный осмотический градиент между канальцевой и интерстициальной жидкостями обуславливает выход воды из канальцев и все большее концентрирование мочи в направлении к сосочкам мозгового слоя почки (нижний полюс петли Генле). В восходящем отделе петли Генле канальцевая жидкость становится гипотоничной вследствие активного транспорта из нее натрия, хлора, калия. В собирательных трубках происходит АДГ-зависимая реабсорбция воды, концентрирование и формирование конечной мочи.

В норме при обеспечении полного выведения вредных продуктов метаболизма диурез колеблется от 1300 до 1500 в сутки. Средняя нормальная осмолярность суточной мочи колеблется от 1000 до 1200 мосм/л, т. е. в 3,5–4 раза выше, чем осмолярность плазмы крови.

Если диурез составляет < 400 мл/сут, это указывает на олигурию. Она возникает при: 1) нарушении системного кровообращения (шок) и почечного кровообращения (тромбоз почечной артерии); 2) паренхиматозной почечной недостаточности (значительное уменьшение количества функционирующих почечных нефронов при истощении компенсаторных механизмов); 3) нарушении оттока мочи из почек (почечно-каменная болезнь).

При полиурии диурез может достигать 20 л и более (например, у больных несахарным диабетом), относительная плотность мочи и осмолярность резко снижены - соответственно не более 1001 и меньше 50 ммоль/л. Нарушение концентрационной способности почек проявляется уменьшением относительной плотности мочи и ее осмолярности: гипостенурия - снижение концентрационной способности почек, изостенурия - выраженное уменьшение ее, астенурия - полное нарушение концентрационной способности.

Потериводы перспирационным путем через кожу увеличиваются при усилении потоотделения. Повышение температуры тела на 1 С º сопровождается увеличением потери воды на 200 мл и более. При лихорадочных состояниях организм может терять до 8–10 л жидкости в сутки путем потоотделения. Возрастание потери воды через легкие (с выдыхаемым воздухом) наблюдается при гипервентиляции. Потери воды этим путем могут быть весьма значительными у маленьких детей при нарушении нормального носового дыхания.

В нормальных условиях из 8–9 л поступающей за сутки в ЖКТ жидкости (слюны - 1500 мл, желудочного сока - 2500 мл, желчи - 800 мл, панкреатического сока - 700 мл, кишечного сока - 3000 мл) выделяется с калом около 100–200 мл воды, остальная вода реабсорбируется (рис. 2). Потери воды и электролитов (К, Сl) через ЖКТ резко возрастают при повторяющихся эпизодах рвоты (например, при токсикозе беременных), при диарее (энтериты, кишечные свищи и др.), что приводит к нарушениям водно-электролитного баланса и КОС (выделительный кишечный ацидоз). Напротив, состояния пониженной перистальтики кишечника могут сопровождаться скоплением в просвете кишечника жидкости, выключенной из общего обмена воды (третье пространство).

Рис. 2. Реабсорбция воды в кишечнике в норме и при его заболеваниях

ГЛАВА 3.

Дата добавления: 2016-11-23 Виды экономических систем (этапы развития экономики)

  • Витамин В5 необходим для обмена жиров, углеводов, аминокислот, синтеза жизненно важных жирных кислот, холестерина, гистамина, ацетилхолина, гемоглобина.
  • Водно-солевой обмен. Регуляция водно-солевого обмена. Значение минеральных солей.

  • Электролитный баланс и его нарушения в организме человека

    Электролитный баланс в организме человека – это равновесие анионов (калий, натрий и пр.) и катионов (органические кислоты, хлор и т.д).

    Нарушения обмена калия

    Роль калия в организме многогранна. Он входит в состав белков, что обусловливает повышенную потребность в нем при активации анаболических процессов. Калий участвует в углеводном обмене - в синтезе гликогена; в частности, глюкоза переходит внутрь клеток только вместе с калием. Он участвует и в синтезе ацетилхолина, а также в процессе деполяризации и реполяризации мышечных клеток.

    Нарушения обмена калия в виде гипокалиемии или гиперкалиемии сопровождают заболевания желудочно-кишечного тракта достаточно часто.

    Гипокалиемия может быть следствием заболеваний, сопровождающихся рвотой или поносом, а также при нарушениях процессов всасывания в кишечнике. Она может возникать под влиянием длительного применения глюкозы, диуретиков, сердечных гликозидов, адренолитических препаратов и при лечении инсулином. Недостаточная или неправильная предоперационная подготовка или послеоперационное ведение больного - бедная калием диета, вливание растворов, не содержащих калия,- также могут приводить к снижению содержания калия в организме.

    Дефицит калия может проявляться чувством покалывания и тяжести в конечностях; больные ощущают тяжесть в веках, мышечную слабость и быструю утомляемость. Они вялы, у них наблюдается пассивное положение в постели, медленная прерывистая речь; могут появиться нарушения глотания, преходящие параличи и даже расстройства сознания - от сонливости и сопора до развития комы. Изменения со стороны сердечно-сосудистой системы характеризуются тахикардией, артериальной гипотензией, увеличением размеров сердца, появлением систолического шума и признаков сердечной недостаточности , а также типичной картиной изменений на ЭКГ.

    Гипокалиемия симпотомы

    Гипокалиемия сопровождается повышением чувствительности к действию мышечных релаксантов и удлинением времени их действия, замедлением пробуждения больного после операции, атонией желудочно-кишечного тракта. В этих условиях может наблюдаться и гипокалиемический (внеклеточный) метаболический алкалоз .

    Коррекция гипокалиемии

    Коррекция недостатка калия должна основываться на точном расчете его дефицита и осуществляться под контролем содержания калия и динамики клинических проявлений.

    При проведении коррекции гипокалиемии необходимо учитывать и суточную потребность в нем, равную 50-75 ммоль (2-3 г). Следует помнить, что в разных солях калия содержится различное его количество. Так, 1 г калия содержится в 2 г калия хлорида, в 3,3 калия цитрата и в 6 г калия глюконата.

    Гипокалиемия лечение

    Препараты калия рекомендуется вводить в виде 0,5 % раствора обязательно с глюкозой и инсулином со скоростью, не превышающей 25 ммоль в час (1 г калия или 2 г калия хлорида). При этом необходим тщательный контроль состояния больного, динамики лабораторных показателей, а также и ЭКГ во избежание передозировки.

    В то же время имеются исследования и клинические наблюдения, показывающие, что при выраженной гипокалиемии правильно выбранная по объему и набору препаратов парентеральная терапия может и должна включать значительно большее количество препаратов калия. В отдельных случаях количество вводимого калия в 10 раз превышало рекомендуемые выше дозы; при этом не было гиперкалиемии. Однако, мы считаем, что передозировка калия и опасность нежелательных эффектов его реальны. Осторожность при введении больших количеств калия необходима, особенно, если нет возможности обеспечить постоянный лабораторный и электрокардиографический контроль.

    Гиперкалиемия причины

    Гиперкалиемия может быть следствием почечной недостаточности (нарушено выведение ионов калия из организма), массивного переливания консервированной донорской крови, в особенности длительных сроков хранения, недостаточности функции надпочечников, повышенного распада тканей при травме; она может иметь место в послеоперационном периоде, при чрезмерно быстром введении препаратов калия, а также при ацидозе и внутрисосудистом гемолизе.

    Симптомы

    Клинически гиперкалиемия проявляется ощущением «ползания мурашек», особенно в конечностях. При этом возникают нарушения работы мышц, снижение или исчезновение сухожильных рефлексов, нарушения работы сердца в виде брадикардии. Типичные изменения ЭКГ заключаются в повышении и заострении зубца Т, удлинении интервала Р-Q, появлении желудочковой аритмии, вплоть до фибрилляции сердца.

    Гиперкалиемия лечение

    Терапия гиперкалиемии зависит от ее выраженности и причины. При выраженной гиперкалиемии, сопровождающейся тяжелыми нарушениями сердечной деятельности, показано повторное внутривенное введение кальция хлорида - 10-40 мл 10 % раствора. При умеренной гиперкалиемии можно использовать внутривенное введение глюкозы с инсулином (10-12 ЕД инсулина на 1 л 5 % раствора или 500 мл 10% раствора глюкозы). Глюкоза способствует перемещению калия из внеклеточного пространства во внутриклеточное. При сопутствующей почечной недостаточности показано проведение перитонеального диализа и гемодиализа.

    Наконец, надо иметь в виду, что коррекция сопутствующего нарушения кислотно-основного состояния - алкалоза при гипокалиемии и ацидоза при гиперкалиемии - также способствует устранению нарушений баланса калия.

    Обмен натрия

    Нормальная концентрация натрия в плазме крови составляет 125-145 ммоль/л, а в эритроцитах - 17-20 ммоль/л.

    Физиологическая роль натрия заключается в его ответственности за поддержание осмотического давления внеклеточной жидкости и перераспределение воды между внеклеточной и внутриклеточной средой.

    Дефицит натрия может развиться в результате его потерь через желудочно-кишечный тракт - при рвотах, поносах, кишечных свищах, при потерях через почки при спонтанной полиурии или форсированном диурезе, а также при обильном потоотделении через кожу. Реже это явление может быть следствием глюкокортикоидной недостаточности или избыточной выработки антидиуретического гормона.

    Гипонатриемия причины

    Гипонатриемия может возникать и при отсутствии внешних потерь - при развитии гипоксии, ацидоза и других причин, вызывающих повышение проницаемости клеточных мембран. В этом случае внеклеточный натрий перемещается внутрь клеток, что и сопровождается гипонатриемией.

    Дефицит натрия вызывает перераспределение жидкости в организме: снижается осмотическое давление плазмы крови и возникает внутриклеточная гипергидратация.

    Симптомы дефицита натрия

    Клинически гипонатриемия проявляется быстрой утомляемостью, головокружением, тошнотой, рвотой, снижением артериального давления, судорогами, нарушениями сознания. Как видно, эти проявления неспецифичны, и для уточнения характера нарушений электролитного баланса и степени их выраженности надо определить содержание натрия в плазме крови и эритроцитах. Это необходимо и для направленной количественной коррекции.

    Гипонатриемия лечение

    При истинном дефиците натрия следует использовать растворы натрия хлорида с учетом величины дефицита. При отсутствии потерь натрия необходимы меры, направленные на устранение причин, вызвавших повышение проницаемости мембран, коррекция ацидоза, применение глюкокортикоидных гормонов, ингибиторов протеолитических ферментов, смеси глюкозы, калия и новокаина. Эта смесь улучшает микроциркуляцию, способствует нормализации проницаемости клеточных мембран, препятствует усиленному переходу ионов натрия внутрь клеток и тем самым нормализует натриевый баланс.

    Гипернатриемия причины

    Гипернатриемия возникает на фоне олигурии, ограничения вводимых жидкостей, при избыточном введении натрия, при лечении глюкокортикоидными гормонами и АКТГ, а также при первичном гиперальдостеронизме и синдроме Кушинга. Она сопровождается нарушением водного баланса - внеклеточной гипергидратацией, проявляется жаждой, гипертермией, артериальной гипертензией, тахикардией. Могут развиваться отеки, повышение внутричерепного давления, сердечная недостаточность.

    Гипернатриемия лечение

    Гипернатриемия устраняется назначением ингибиторов альдостерона (верошпирон), ограничением введения натрия и нормализацией водного обмена.

    Обмен кальция

    В нормальном функционировании организма кальций играет важную роль. Он повышает тонус симпатической нервной системы, уплотняет тканевые мембраны, снижает их проницаемость, повышает свертываемость крови. Кальций оказывает десенсибилизирующее и противовоспалительное действие, активизирует макрофагальную систему и фагоцитарную активность лейкоцитов. Нормальное содержание кальция в плазме крови составляет 2,25-2,75 ммоль/л.

    Гипокальциемия причины

    При многих заболеваниях желудочно-кишечного тракта развиваются нарушения кальциевого обмена, в результате чего возникают либо избыток, либо дефицит содержания кальция в плазме крови. Так, при остром холецистите, остром панкреатите, пилородуоденальных стенозах, возникает гипокальциемия вследствие рвоты, фиксации кальция в очагах стеатонекроза, повышения содержания глюкагона. Гипокальциемия может возникать после массивной гемотрансфузионной терапии вследствие связывания кальция с цитратом; в этом случае она может носить и относительный характер вследствие поступления в организм значительных количеств калия, содержащегося в консервированной крови. Снижение содержания кальция может наблюдаться в послеоперационном периоде вследствие развития функционального гипокортицизма, вызывающего уход кальция из плазмы крови в костные депо.

    Гипокальциемия симптомы

    Гипокальциемия лечение

    Терапия гипокальциемических состояний и их профилактика заключаются во внутривенном введении препаратов кальция - хлорида или глюконата. Профилактическая доза кальция хлорида составляет 5-10 мл 10 % раствора, лечебная - может увеличиваться до 40 мл. Предпочтительно осуществлять терапию слабыми растворами - не выше 1-процентной концентрации. В противном случае резкое повышение содержания кальция в плазме крови вызывает выброс кальцитонина щитовидной железой, что стимулирует его переход в костные депо; при этом концентрация кальция в плазме крови может упасть ниже исходной.

    Гиперкальциемия причины

    Гиперкальциемия при заболеваниях желудочно-кишечного тракта встречается гораздо реже, однако она может иметь место при язвенной болезни , раке желудка и других заболеваниях, сопровождающихся истощением функции коры надпочечников. Гиперкальциемия проявляется мышечной слабостью, общей заторможенностью больного; возможны тошнота, рвота. При проникновении значительных количеств кальция внутрь клеток могут развиться поражения головного мозга, сердца, почек, поджелудочной железы.

    Обмен магния в организме человека

    Физиологическая роль магния заключается в активации функций ряда ферментных систем - АТФазы, щелочной фосфатазы, холинэстеразы и др. Он участвует в реализации передачи нервных импульсов, синтезе АТФ, аминокислот. Концентрация магния в плазме крови составляет 0,75-1 ммоль/л, а в эритроцитах - 24-28 ммоль/л. Магний довольно стабильно сохраняется в организме, и потери его развиваются нечасто.

    Гипомагниемия – причины и лечение

    Тем не менее гипомагниемия возникает при длительном парентеральном питании и патологических потерях через кишечник, так как магний всасывается в тонкой кишке. Поэтому дефицит магния может развиваться после обширной резекции тонкой кишки, при поносах, тонкокишечных свищах, при парезе кишечника. Такое же нарушение может возникать на фоне гиперкальциемии и гипернатриемии, при лечении сердечными гликозидами, при диабетическом кетоацидозе. Дефицит магния проявляется повышением рефлекторной активности, судорогами или мышечной слабостью, артериальной гипотензией, тахикардией. Коррекция осуществляется растворами, содержащими магния сульфат (до 30 ммоль/сут).

    Гипермагниемия – причины и коррекция

    Гипермагниемия встречается реже гипомагниемии. Главные ее причины - почечная недостаточность и массивное разрушение тканей, ведущее к высвобождению внутриклеточного магния. Гипермагниемия может развиться на фоне недостаточности функции надпочечников. Она проявляется снижением рефлексов, гипотонией, мышечной слабостью, нарушениями сознания, вплоть до развития глубокой комы. Гипермагниемия корригируется устранением ее причин, а также перитонеальным диализом или гемодиализом.

    Вся информация размещенная на сайте носит ознакомительный характер и не являются руководством к действию. Перед применением любых лекарств и методов лечения необходимо обязательно проконсультироваться с врачом. Администрация ресурса сайт не несет ответственность за использование материалов размещенных на сайте.