Как генерируется энергия, как она преобразуется из одной формы в другую и что происходит с энергией в замкнутой системе? На все эти вопросы помогут дать ответ законы термодинамики. Подробнее сегодня будет рассмотрен второй закон термодинамики.

Законы в повседневной жизни

Законы управляют повседневной жизнью. В дорожных законах говорится, что нужно остановиться на знаках остановки. Правительственные требуют предоставить часть своей зарплаты государству и федеральному правительству. Даже научные применимы к повседневной жизни. Например, закон силы тяжести предсказывает довольно плохой результат для тех, кто пытается летать. Другой набор научных законов, которые влияют на повседневную жизнь, - это законы термодинамики. Итак, можно привести ряд примеров, чтобы увидеть, как они влияют на повседневную жизнь.

Первый закон термодинамики

Первый закон термодинамики гласит, что энергия не может быть создана или уничтожена, но можно преобразовать ее из одной формы в другую. Это также иногда называют законом сохранения энергии. Итак, как это относится к повседневной жизни? Ну, взять, к примеру, компьютер, который вы используете сейчас. Он питается энергией, но откуда эта энергия? Первый закон термодинамики говорит нам, что эта энергия не могла появиться из-под воздуха, поэтому она откуда-то появилась.

Можно отследить эту энергию. Компьютер питается от электричества, но откуда это электричество? Правильно, с электростанции или гидроэлектростанции. Если рассматривать вторую, то она будет связана с плотиной, которая сдерживает реку. У реки есть связь с кинетической энергией, а это означает, что река течет. Плотина превращает эту кинетическую энергию в потенциальную энергию.

Как работает гидроэлектростанция? Вода используется для вращения турбины. При вращении турбины приводится в действие генератор, который будет создавать электричество. Это электричество может быть проложено полностью в проводах от электростанции до вашего дома, чтобы при подключении шнура питания к электрической розетке электричество проникало в ваш компьютер, чтобы он мог работать.

Что произошло здесь? Уже было определенное количество энергии, которая была связана с водой в реке как кинетическая энергия. Потом она превратилась в потенциальную энергию. Затем плотина приняла эту потенциальную энергию и превратила ее в электричество, которое затем смогло попасть в ваш дом и привести в действие компьютер.

Второй закон термодинамики

Изучив этот закон, можно понять, как работает энергия и почему все движется к возможному хаосу и беспорядку. Второй закон термодинамики еще называют законом энтропии. Вы когда-нибудь задумывались, как возникла Вселенная? Согласно Теории Большого Взрыва, до того, как зародилось все вокруг, вместе собралось огромное количество энергии. После Большого Взрыва появилась Вселенная. Все это хорошо, только что это была за энергия? В начале времени вся энергия во Вселенной содержалась в одном относительно небольшом месте. Эта интенсивная концентрация представляла собой огромное количество того, что называется потенциальной энергией. Со временем она распространилась по огромному пространству нашей Вселенной.

В гораздо меньших масштабах резервуар воды, удерживаемый плотиной, содержит потенциальную энергию, так как ее расположение дает возможность протекать через плотину. В каждом случае запасенная энергия, однажды выпущенная, распространяется и делает это без каких-либо прилагаемых усилий. Другими словами, высвобождение потенциальной энергии является спонтанным процессом, который возникает без необходимости в дополнительных ресурсах. По мере того, как энергия распространяется, часть ее преобразуется в полезную и выполняет определенную работу. Остальная преобразуется в непригодную, просто называемую теплотой.

Поскольку Вселенная продолжает распространяться, она содержит все менее и менее полезную энергию. Если менее полезная доступна, меньше работы может быть сделано. Так как вода течет через плотину, она также содержит менее полезную энергию. Это уменьшение полезной энергии с течением времени называется энтропией, где энтропия - это количество неиспользуемой энергии в системе, а система - это просто совокупность объектов, составляющих целое.

Энтропия также может упоминаться как количество случайностей или хаоса в организации без организации. По мере того как полезная энергия уменьшается с течением времени, дезорганизация и хаос увеличиваются. Таким образом, по мере освобождения накопленной потенциальной энергии не все это преобразуется в полезную. Все системы испытывают это увеличение энтропии с течением времени. Это очень важно понять, и это явление называют вторым законом термодинамики.

Энтропия: случайность или дефект

Как вы, возможно, догадались, второй закон следует за первым, который обычно называют законом сохранения энергии, и он утверждает, что энергия не может быть создана и ее нельзя уничтожить. Другими словами, количество энергии во Вселенной или любой системе является постоянным. Второй закон термодинамики обычно называют законом энтропии, и он считает, что с течением времени энергия становится менее полезной, а качество ее уменьшается со временем. Энтропия - это степень случайности или дефектов, которые имеет система. Если система очень неупорядоченная, то она обладает большой энтропией. Если в системе много неисправностей, то энтропия низкая.

Говоря простыми словами, второй закон термодинамики гласит, что энтропия системы не может со временем уменьшаться. Это означает, что в природе вещи переходят от состояния порядка к состоянию беспорядка. И это необратимо. Система никогда не станет более упорядоченной сама по себе. Другими словами, в природе энтропия системы всегда увеличивается. Один из способов подумать об этом - это ваш дом. Если вы его никогда не будете убирать и пылесосить, то довольно скоро у вас будет ужасный бардак. Энтропия увеличилась! Чтобы уменьшить ее, необходимо применять энергию для использования пылесоса и швабры, чтобы очистить от пыли поверхность. Дом сам себя не уберет.

Что представляет собой второй закон термодинамики? Формулировка простыми словами гласит, что при изменении энергии из одной формы в другую форму, материя либо движется свободно, либо энтропия (беспорядок) в замкнутой системе увеличивается. Различия в температуре, давлении и плотности имеют тенденцию выравниваться горизонтально через некоторое время. Из-за силы тяжести плотность и давление не выравниваются вертикально. Плотность и давление на дне будут больше, чем сверху. Энтропия - это мера распространения материи и энергии везде, где у нее есть доступ. Наиболее распространенная формулировка второго закона термодинамики в основном связана с Рудольфом Клаузиусом, который говорил:

Невозможно построить устройство, которое не производит другого эффекта, чем перенос тепла из тела с более низкой температурой в тело с более высокой температурой.

Другими словами, все пытается поддерживать ту же температуру с течением времени. Существует много формулировок второго закона термодинамики, в которых используются разные термины, но все они означают одно и то же. Другое заявление Клаузиуса:

Тепло само по себе не происходит от холодного до более горячего тела.

Второй закон применим только к крупным системам. Он касается вероятного поведения системы, в которой нет энергии или материи. Чем больше система, тем более вероятен второй закон.

Еще одна формулировка закона:

Полная энтропия всегда увеличивается в самопроизвольном процессе.

Увеличение энтропии ΔS при протекании процесса должно превышать или быть равным отношению количества теплоты Q, переданного системе, к температуре Т, при которой теплота передается.

Термодинамическая система

В общем смысле формулировка второго закона термодинамики простыми словами гласит, что температурные различия между системами, находящимися в контакте друг с другом, имеют тенденцию к выравниванию и что работа может быть получена из этих неравновесных различий. Но при этом происходит потеря тепловой энергии, а энтропия увеличивается. Различия давления, плотности и температуры в имеют тенденцию выравниваться, если им предоставляется возможность; плотность и давление, но не температура, зависят от силы тяжести. Тепловой двигатель представляет собой механическое устройство, которое обеспечивает полезную работу из-за разницы в температуре двух тел.

Термодинамическая система - это та, которая взаимодействует и обменивается энергией с областью вокруг нее. Обмен и передача должны произойти, по крайней мере, двумя способами. Один путь должен быть передачей тепла. Если термодинамическая система «находится в равновесии», она не может изменять свое состояние или статус без взаимодействия с окружающей средой. Проще говоря, если вы находитесь в равновесии, вы «счастливая система», вы ничего не можете сделать. Если вы что-то захотите сделать, вы должны взаимодействовать с окружающим миром.

Второй закон термодинамики: необратимость процессов

Невозможно иметь циклический (повторяющийся) процесс, который полностью преобразует тепло в работу. Также невозможно иметь процесс, который переносит тепло от холодных объектов на теплые объекты без использования работы. Некоторое количество энергии в реакции всегда теряется для нагревания. Кроме того, система не может преобразовать всю свою энергию в рабочую энергию. Вторая часть закона более очевидна.

Холодное тело не может нагревать теплое тело. Тепло естественным образом стремится течь от более теплых до более прохладных областей. Если тепло перейдет от более прохладного к более теплым, это противоречит тому, что является «естественным», поэтому система должна выполнить некоторую работу, чтобы это произошло. в природе - второй закон термодинамики. Это, пожалуй, самый известный (по крайней мере, среди ученых) и важный закон всей науки. Одна из его формулировок:

Энтропия Вселенной стремится к максимуму.

Другими словами, энтропия либо остается неизменной, либо становится больше, энтропия Вселенной никогда не может снизиться. Проблема в том, что это всегда верно. Если взять флакон духов и распылить его в комнате, то скоро ароматные атомы заполнят все пространство, и этот процесс является необратимым.

Взаимосвязи в термодинамике

В законах термодинамики описываются взаимосвязи между тепловой энергией или теплом и другими формами энергии, и как энергия влияет на материю. Первый закон термодинамики гласит, что энергия не может быть создана или уничтожена; общее количество энергии во Вселенной остается неизменным. Второй закон термодинамики посвящен качеству энергии. В нем говорится, что по мере передачи или преобразования энергии все больше и больше теряется полезной энергии. Второй закон также гласит, что существует естественная тенденция превращения любой изолированной системы в более неупорядоченное состояние.

Даже когда порядок увеличивается в определенном месте, когда вы принимаете во внимание всю систему, включая окружающую среду, всегда наблюдается увеличение энтропии. В другом примере кристаллы могут образовываться из раствора соли, когда вода выпаривается. Кристаллы более упорядочены, чем молекулы соли в растворе; однако испаренная вода гораздо более беспорядочна, чем жидкая вода. Процесс, взятый в целом, приводит к чистому увеличению беспорядка.

Работа и энергия

Во втором законе объясняется, что невозможно преобразовать тепловую энергию в механическую энергию со 100-процентной эффективностью. Можно привести пример с автомобилем. После процесса нагрева газа, чтобы увеличить его давление для привода поршня, в газе всегда остается некоторое количество тепла, которое нельзя использовать для выполнения каких-либо дополнительных работ. Это отработанное тепло должно быть отброшено путем его передачи в радиатор. В случае с автомобильным двигателем это делается путем извлечения отработанного топлива и воздушной смеси в атмосферу.

Кроме того, любое устройство с подвижными частями создает трение, которое преобразует механическую энергию в тепло, которое обычно непригодно и должно быть удалено из системы путем переноса его в радиатор. Когда горячее и холодное тело контактируют друг с другом, тепловая энергия будет поступать из горячего тела в холодное тело до тех пор, пока они не достигнут теплового равновесия. Тем не менее, тепло никогда не вернется в другую сторону; разница температур двух тел никогда не будет спонтанно увеличиваться. Перемещение тепла от холодного тела к горячему телу требует работы, которую должен выполнять внешний источник энергии, такой как тепловой насос.

Судьба Вселенной

Второй закон также предсказывает конец Вселенной. Это конечный уровень беспорядка, если везде будет постоянное тепловое равновесие, никакая работа не может быть выполнена, и вся энергия будет заканчиваться как случайное движение атомов и молекул. По современным данным, Метагалактика - это расширяющаяся нестационарная система, о тепловой смерти Вселенной и речи быть не может. Тепловая смерть - это состояние теплового равновесия, при котором прекращаются все процессы.

Это положение ошибочно, так как второй закон термодинамики применяется только к замкнутым системам. А Вселенная, как известно, безгранична. Однако сам термин «тепловая смерть Вселенной» иногда используется для обозначения сценария будущего развития Вселенной, согласно которому она так и будет расширяться до бесконечности во тьму пространства, пока не обратится в рассеянный холодный прах.

Второе начало термодинамики

Исторически второе начало термодинамики возникло из анализа работы тепловых машин (С. Карно, 1824). Существует несколько его эквивалентных формулировок. Само название «второе начало термодинамики» и исторически первая его формулировка (1850) принадлежат Р. Клаузиусу.

Первое начало термодинамики, выражая закон сохранения и превращения энергии, не позволяет установить направление протекания термодинамических процессов. Кроме того, можно представить множество процессов, не противоречащих первому началу, в которых энергия сохраняется, а в природе они не осуществляются.

Опыт показывает, что разные виды энергии неравноценны в отношении способности превращаться в другие виды энергии. Механическую энергию можно целиком превратить во внутреннюю энергию любого тела. Для обратных превращений внутренней энергии в другие виды существуют определённые ограничения: запас внутренней энергии, ни при каких условиях, не может превратиться целиком в другие виды энергии. С отмеченными особенностями энергетических превращений связано направление протекания процессов в природе.

Второе начало термодинамики – принцип, устанавливающий необратимость макроскопических процессов, протекающих с конечной скоростью.

В отличие от чисто механических (без трения) или электродинамических (без выделения джоулевой теплоты) обратимых процессов, процессы, связанные с теплообменом при конечной разности температур (т. е. текущие с конечной скоростью), с трением, диффузией газов, расширением газов в пустоту, выделением джоулевой теплоты и т.д., необратимы, т. е. могут самопроизвольно протекать только в одном направлении.

Второе начало термодинамики отражает направленность естественных процессов и налагает ограничения на возможные направления энергетических превращений в макроскопических системах, указывая, какие процессы в природе возможны, а какие – нет.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Формулировки второго закона термодинамики

1). Формулировка Карно : наибольший КПД тепловой машины не зависит от рода рабочего тела и вполне определяется предельными температурами , между которыми машина работает.

2). Формулировка Клаузиуса : невозможен процесс единственным результатом которого является передача энергии в форме теплоты от тела менее нагретого , к телу более нагретому.

Второе начало термодинамики не запрещает переход теплоты от менее нагретого тела к более нагретому. Такой переход осуществляется в холодильной машине, но при этом внешние силы осуществляют работу над системой, т.е. этот переход не является единственным результатом процесса.

3). Формулировка Кельвина : невозможен круговой процесс , единственным результатом которого является превращение теплоты , полученной от нагревателя , в эквивалентную ей работу.

На первый взгляд может показаться, что такой формулировке противоречит изотермического расширения идеального газа. Действительно, всё полученное идеальным газом от какого-то тела тепло превращается полностью в работу. Однако получение тепла и превращение его в работу не единственный конечный результат процесса; кроме того, в результате процесса происходит изменение объёма газа.

P.S. : необходимо обратить внимание на слова «единственным результатом»; запреты второго начала снимаются, если процессы, о которых идёт речь, не являются единственными.

4). Формулировка Оствальда : осуществление вечного двигателя второго рода невозможно.

Вечным двигателем второго рода называется периодически действующее устройство , которое совершает работу за счёт охлаждения одного источника теплоты.

Примером такого двигателя мог бы служить судовой двигатель, получающий тепло из моря и использующий его для движения судна. Такой двигатель был бы практически вечным, т.к. запас энергии в окружающей среде практически безграничен.

С точки зрения статистической физики второе начало термодинамики имеет статистический характер: оно справедливо для наиболее вероятного поведения системы. Существование флуктуаций препятствует точному его выполнению, однако вероятность сколь-нибудь значительного нарушения крайне мала.

Энтропия

Понятие «энтропия» введено в науку Р.Клаузиусом в 1862 г. и образовано из двух слов: «эн » - энергия, «тропэ » - превращаю.

Согласно нулевому началу термодинамики изолированная термодинамическая система с течением времени самопроизвольно переходит в состояние термодинамического равновесия и остаётся в нём сколь угодно долго, если внешние условия сохраняются неизменными.

В равновесном состоянии все виды энергии системы переходят в тепловую энергию хаотического движения атомов и молекул, составляющих систему. Никакие макроскопические процессы в такой системе невозможны.

Количественной мерой перехода изолированной системы в равновесное состояние служит энтропия. По мере перехода системы в равновесное состояние её энтропия возрастает и достигает максимума при достижении равновесного состояния.

Энтропия является функцией состояния термодинамической системы, обозначается: .

Теоретическое обоснование : приведённая теплота , энтропия

Из выражения для КПД цикла Карно: следует, что или , где – количество теплоты, отдаваемое рабочим телом холодильнику, принимаем: .

Тогда последнее соотношение можно записать в виде:

Отношение теплоты, полученной телом в изотермическом процессе, к температуре теплоотдающего тела называется приведённым количеством теплоты :

С учётом формулы (2) формулу (1) представим в виде:

т.е. для цикла Карно алгебраическая сумма приведённых количеств теплоты равна нулю.

Приведённое количество теплоты, сообщаемое телу на бесконечно малом участке процесса: .

Приведённое количество теплоты для произвольного участка:

Строгий теоретический анализ показывает, что для любого обратимого кругового процесса сумма приведённых количеств теплоты равна нулю:

Из равенства нулю интеграла (4) следует, что подынтегральная функция есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от пути, каким система пришла в это состояние:

Однозначная функция состояния , полным дифференциалом которой является ,называется энтропией .

Формула (5) справедлива лишь для обратимых процессов, в случае неравновесных необратимых процессов такое представление несправедливо.

Свойства энтропии

1). Энтропия определяется с точностью до произвольной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий двух состояний:

. (6)

Пример : если система (идеальный газ) совершает равновесный переход из состояния 1 в состояние 2, то изменение энтропии равно:

,

где ; .

т.е. изменение энтропии идеального газа при переходе его из состояния 1 в состояние 2 не зависит от вида процесса перехода.

В общем случае в формуле (6) приращение энтропии не зависит от пути интегрирования.

2).Абсолютное значение энтропии можно установить с помощью третьего начала термодинамики (теоремы Нернста):

Энтропия любого тела стремиться к нулю при стремлении к абсолютному нулю его температуры : .

Таким образом, за начальную точку отсчёта энтропии принимают при .

3). Энтропия величина аддитивная, т.е. энтропия системы из нескольких тел является суммой энтропий каждого тела: .

4). Как и внутренняя энергия, энтропия есть функция параметров термодинамической системы .

5), Процесс, протекающий при постоянной энтропии называетсяизоэнтропийным.

В равновесных процессах без передачи тепла энтропия не меняется.

В частности, изоэнтропийным является обратимый адиабатный процесс: для него ; , т.е. .

6). При постоянном объёме энтропия является монотонно возрастающей функцией внутренней энергии тела.

Действительно, из первого закона термодинамики следует, что при имеем: , тогда . Но температура всегда. Поэтому приращения и имеют один и тот же знак, что и требовалось доказать.

Примеры изменения энтропии в различных процессах

1). При изобарном расширении идеального газа

2). При изохорном расширении идеального газа

3). При изотермическом расширении идеального газа

.

4). При фазовых переходах

Пример : найти изменение энтропии при превращении массы льда при температуре в пар .

Решение

Первый закон термодинамики: .

Из уравнения Менделеева – Клапейрона следует: .

Тогда выражения для первого закона термодинамики примет вид:

.

При переходе из одного агрегатного состояния в другое, общее изменение энтропии складывается из изменений в отдельных процессах:

A). Нагревание льда от температуры до температуры плавления :

,где –удельная теплоёмкость льда.

Б). Плавление льда: ,где – удельная теплота плавления льда.

В). Нагревание воды от температуры до температуры кипения :

, где –удельная теплоёмкость воды.

Г). Испарение воды: ,где –удельная теплота парообразования воды.

Тогда общее изменение энтропии:

Принцип возрастания энтропии

Энтропия замкнутой системы при любых, происходящих в ней процессах не убывает:

или для конечного процесса: , следовательно: .

Знак равенства относится к обратимому процессу, знак неравенства – к необратимому. Последние две формулы – математическое выражение второго закона термодинамики. Таким образом, введение понятия «энтропия» позволило строго математически сформулировать второе начало термодинамики.

Необратимые процессы приводят к установлению равновесного состояния. В этом состоянии энтропия изолированной системы достигает максимума. Никакие макроскопические процессы в такой системе невозможны.

Величина изменения энтропии является качественной характеристикой степени необратимости процесса.

Принцип возрастания энтропии относится к изолированным системам. Если система неизолированная, то её энтропия может и убывать.

Вывод : т.к. все реальные процессы необратимые, то все процессы в замкнутой системе ведут к увеличению её энтропии.

Теоретическое обоснование принципа

Рассмотрим замкнутую систему, состоящую из нагревателя, холодильника, рабочего тела и «потребителя» совершаемой работы (тело, обменивающееся с рабочим телом энергией только в форме работы), совершающую цикл Карно. Это обратимый процесс, изменение энтропии которого равно:

,

где – изменение энтропии рабочего тела; – изменение энтропии нагревателя; – изменение энтропии холодильника; – изменение энтропии «потребителя» работы.


Министерство образования и науки Российской Федерации

Государственной образовательное учреждение высшего профессионального образования

Ивановский государственный химико-технологический университет

Кафедра Технологии пищевых продуктов и биотехнологии (ТППиБТ)

Реферат

по дисциплине «Техническая термодинамика и теплотехника»

II -ой закон термодинамики или «Тепловая смерть Вселенной»

Выполнил:

студент 3 курса

Ивлев Павел Андреевич

Руководитель:

к т н, доцент, кафедры ПиАХТ

Маркичев Николай Аркадьевич

Иваново 2010 г.

Введение__________________________________________________________________ 3

Часть 1. Второй закон термодинамики.

1.1. Второй закон термодинамики. Характеристика и формулировка._______________4

Часть 2. Энтропия

2.1. Понятие энтропии.______________________________________________________5

2.2. Закон возрастания энтропии. Вывод закона возрастания энтропии.______________5

2.3 Возможность энтропии во Вселенной.______________________________________6

Часть 3. Теория «тепловой смерти» Вселенной

3.1. Появление идеи Теории «тепловой смерти» Вселенной._______________________8

3.2. Взгляд на Теорию «тепловой смерти» Вселенной из ХХ века.__________________9

3.3 «За» и «против» Теории «тепловой смерти» Вселенной_______________________10

Заключение_______________________________________________________________16

Список, использованной в работе литературы __________________________________17

Введение:

В данной работе поднимаеться проблема о будущем нашей Вселенной. О будущем очень далеком, настолько, что неизвестно, наступит ли оно вообще. Жизнь и развитие науки существенно меняют наши представления и о Вселенной, и об ее эволюции, и о законах, управляющих этой эволюцией. В самом деле, существование черных дыр было предсказано еще в XVIII веке. Но лишь во второй половине XX столетия их стали рассматривать как гравитационные могилы массивных звезд и как места, куда может навечно «провалиться» значительная часть вещества, доступного наблюдениям, выбывая из общего круговорота. А позже стало известно, что черные дыры испаряются и, таким образом, возвращают поглощенное, хотя совсем в другом обличие. Новые идеи постоянно высказываются космофизиками. Поэтому картины, нарисованные еще совсем недавно, неожиданно оказываются устаревшими.

Одним из наиболее дискуссионных вот уже около 100 лет является вопрос о возможности достижения равновесного состояния во Вселенной, что эквивалентно понятию ее «тепловой смерти», причиной которой являеться Второй закон термодинамики и истекающие из него выводы.

Часть1. Второй закон термодинамики

      Второй закон термодинамики. Характеристика и формулировка:

Естественные процессы всегда направлены в сторону достижения системой равновесного состояния (механического, термического или любого другого). Это явление отражено вторым законом термодинамики, имеющим большое значение и для анализа работы теплоэнергетических поцессов.

Второе начало термодинамики - физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами. Он гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая невозможность перехода всей внутренней энергии системы в полезную работу.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Существуют формулировоки:

- передача теплоты от холодного источника к горячему невозможна без затраты работы;

- невозможно построить периодически действующую машину, совершающую работу и соответственно охлаждающую тепловой резервуар;

- природа стремится к переходу от менее вероятных состояний к более вероятным.

Следует подчеркнуть, что второй закон термодинамики (так же как и первый), сформулирован на основе опыта. В наиболее общем виде второй закон термодинамики может быть сформулирован следующим образом: любой реальный самопроизвольный процесс является необратимым. Все прочие формулировки второго закона являются частными случаями наиболее общей формулировки:

невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более теплым (постулат Клаузиуса, 1850 г.).

В.Томсон (лорд Кельвин) предложил в 1851 г. следующую формулировку: невозможно при помощи неодушевленного материального агента получить от какой-либо массы вещества механическую работу посредством охлаждения ее ниже температуры самого холодного из окружающих предметов.

М.Планк предложил формулировку более четкую, чем формулировка Томсона: невозможно построить периодически действующую машину, все действие которой сводилось бы к понятию некоторого груза и охлаждению теплового источника.

Часть 2. Энтропия

2.1 Понятие энтропии.

Несоответствие между превращением теплоты в работу и работы в теплоту приводит к односторонней направленности реальных процессов в природе, что и отражает физический смысл второго начала термодинамики в законе о существовании и возрастании в реальных процессах некой функции, названной энтропией , определяющей меру обесценения энергии.

Часто второе начало термодинамики преподносится как объединенный принцип существования и возрастания энтропии.

Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях обратимого течения процессов:

Принцип возрастания энтропии сводится к утверждению, что энтропия изолированных систем неизменно возрастает при всяком изменении их состояния и остается постоянной лишь при обратимом течении процессов:

.

Оба вывода о существовании и возрастании энтропии получаются на основе какого-либо постулата, отражающего необратимость реальных процессов в природе. Наиболее часто в доказательстве объединенного принципа существования и возрастания энтропии используют постулаты Р.Клаузиуса, В.Томпсона-Кельвина, М. Планка

2.2. Закон возрастания энтропии. Вывод закона возрастания энтропии.

Применим неравенство Клаузиуса для описания необратимого кругового термодинамического процесса, изображенного на рис 1.

Рисунок 1. Необратимый круговой термодинамический процесс

Пусть процесс 1-2 будет необратимым, а 2-1 процесс - обратимым. Тогда неравенство Клаузиуса для этого случая примет вид

Так как процесс 2-1 является обратимым, тогда

Подстановка этой формулы в неравенство (1) позволяет получить выражение

Сравнение выражений (1) и (2) позволяет записать следующее неравенство

в котором знак равенства имеет место в случае, если процесс 1-2 является обратимым, а знак больше, если процесс 1-2 - необратимый.

Неравенство (3) может быть также записано и в дифференциальной форме

Если рассмотреть адиабатически изолированную термодинамическую систему, для которой, то выражение (4) примет вид

или в интегральной форме

Полученные неравенства выражают собой закон возрастания энтропии, который можно сформулировать следующим образом:

В адиабатически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс.

Записанное утверждение является ещё одной формулировкой второго начала термодинамики.

2.3 Возможность энтропии во Вселенной

В адиабтически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс.

Записанное утверждение является ещё одной формулировкой второго начала термодинамики.

Таким образом, изолированная термодинамическая система стремится к максимальному значению энтропии, при котором наступает состояние термодинамического равновесия.

Необходимо отметить, что если система не является изолированной, то в ней возможно уменьшение энтропии. Примером такой системы может служить, например, обычный холодильник, внутри которого возможно уменьшение энтропии. Но для таких открытых систем это локальное понижение энтропии всегда компенсируется возрастанием энтропии в окружающей среде, которое превосходит локальное ее уменьшение.

С законом возрастания энтропии непосредственно связан парадокс, сформулированный в 1852 году Томсоном (лордом Кельвином) и названый им гипотезой тепловой смерти Вселенной. Подробный анализ этой гипотезы был выполнен Клаузиусом, который считал правомерным распространение на всю Вселенную закона возрастания энтропии. Действительно, если рассмотреть Вселенную как адиабатически изолированную термодинамическую систему, то, учитывая ее бесконечный возраст, на основании закона возрастания энтропии можно сделать вывод о достижении ею максимума энтропии, то есть состояния термодинамического равновесия. Но в реально окружающей нас Вселенной этого не наблюдается.

Часть 3. Теория «тепловой смерти» Вселенной.

Тепловая смерть Вселенной (Т.С.В.) - это вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы.

Этот вывод был сформулирован Р. Клаузиусом (1865) на основе второго начала термодинамики. Согласно второму началу, любая физическая система, не обменивающаяся энергией с другими системами (для Вселенной в целом такой обмен, очевидно, исключен), стремится к наиболее вероятному равновесному состоянию - к так называемому состоянию с максимумом энтропии. ... , «Аналитики» (I и II ) и др.; 3) ... закон исключенного тетьего (А или не – А, т.е. или А истинно, или ... очки" ... тепловой смерти Вселенной . Неуничтожимость материи нельзя понимать только в количественном отношении. Законы ... законы Кеплера, законы термодинамики , законы ...

  • Коцепции физики

    Реферат >> Физика

    Гидростатика Архимеда (III- II в. до н.э.) ... XIII веке очков , но... или начал, являющихся обобщением результатов многочисленных наблюдений и экспериментов. б) Первое начало термодинамики (закон ... формированию концепции "тепловой смерти" вселенной . Ее суть...

  • Энтропия. Второй закон термодинамики

    Самопроизвольные процессы. В природе физические и химические превращения совершаются в определенном направлении. Так, два тела, находящиеся при разных температурах, вступают в контакт, тепловая энергия передается от более теплого тела к более холодному до тех пор, пока температура этих двух тел не сравняется. При погружении цинковой пластинки в соляную кислоту образуется ZnCl 2 и H 2 . Все эти превращения являются самопроизвольными (спонтанными ). Самопроизвольный процесс не может протекать в обратном направлении так же самопроизвольно, как в прямом.

    В химии важно знать критерии, позволяющие предвидеть, может ли химическая реакция происходить самопроизвольно, и если может, то уметь определить количества образовавшихся продуктов. Первый закон термодинамики такого критерия не дает. Тепловой эффект реакции не определяет направления процесса. Самопроизвольно могут протекать как экзотермические, так и эндотермические реакции. Так, например, самопроизвольно идет процесс растворения нитрата аммония NH 4 NO 3 (к) в воде, хотя тепловой эффект этого процесса положителен: > 0 (процесс эндотермический); тоже самое можно сказать и о растворении гипосульфита натрия в воде. А в другом примере невозможно осуществить при Т = 298 К и p = 101 кПа (1 атм) синтез н. гептана C 7 H 16 (ж) , несмотря на то, что стандартная теплота его образования отрицательна: < 0 (процесс экзотермический).

    Таким образом, разность энтальпий реакции еще не определяет возможности ее протекания в данных конкретных условиях.

    Второй закон термодинамики. Критерий самопроизвольного протекания процесса в изолированных системах дает второй закон термодинамики.

    Второй закон термодинамики дает возможность разделить все допускаемые первым законом процессы на самопроизвольные и не самопроизвольные.

    Второй закон термодинамики является постулатом, обоснованным большим опытом, накопленным человечеством. Он выражается разными эквивалентными формулировками:

    1. Теплота не может переходить сама собой от менее нагретого тела к более нагретому - постулат Клаузиуса (1850 г). Утверждается, что процесс теплопроводности необратим.

    2. Быстро или медленно всякая система стремится к состоянию истинного равновесия.

    3. Невозможен периодический процесс, единственным результатом которого является превращение теплоты в работу - формулировка Кельвина - Планк.

    4. Теплота может переходить в работу только при наличии разности температур и не целиком, а с определенным термическим коэффициентом полезного действия:

    где η - термический коэффициент полезного действия; A – работа, полученная системой за счет перехода тепла от тела с высокой температурой (T 1 ) к телу с низкой температурой (T 2 ); Q 1 – теплота, взятая у тела нагретого с температурой T 1 ; Q 2 – теплота, отданная холодному телу с температурой T 2 . Т.е. любые процессы протекают под действием разности потенциалов, каковой для тепловых процессов является разность температур, для электрических разность потенциалов, для механических - разность высот и т.д. Общим является сравнительно низкий коэффициент полезного действия. Значение к. п. д. обращается в единицу, если T 2 → 0 , но абсолютный нуль недостижим (третье начало термодинамики), следовательно, всю энергию нагретого тела при T 1 в работу превратить нельзя. Т.е. при совершении работы часть общей энергии системы остается неиспользованной.

    Понятие об энтропии. Исследуя выражение к.п.д. тепловой машины Клаузиус ввел новую термодинамическую функцию, которую назвал энтропией – S .

    Работа идеальной тепловой машины (цикл Карно) подробно рассматривается в курсе физики.

    Из математического выражения второго закона термодинамики следует:

    или

    В дифференциальной форме:

    Суммируя изменения по всему циклу тепловой машины, получаем выражение где dQ – приращение тепла, T – соответствующая температура; - интеграл по замкнутому контуру.

    Подинтегральное выражение Клаузиус принял за приращение новой функции S – энтропии:

    или

    Энтропия представляет собой функцию параметров состояния системы (p, V, T) и может оценить направление процесса в системе, стремящейся к равновесию, т.к. для равновесного процесса ее изменение равно нулю; или .

    В случае необратимого превращения, т.е. спонтанного процесса, идущего при постоянной температуре, имеем

    Если протекает процесс самопроизвольно, то изменение энтропии положительно:

    Для изолированных систем процессы, для которых изменение энтропии < 0 , запрещены.

    Если в качестве изолированной системы выбрать вселенную, то второе начало термодинамики можно сформулировать следующим образом:

    Существует функция S, называемая энтропией, которая является такой функцией состояния, что

    В случае обратимого процесса энтропия вселенной постоянна, а в случае необратимого процесса возрастает. Энтропия вселенной не может уменьшаться”.

    Статистическая интерпретация энтропии. Для характеристики состояния некоторой массы вещества, являющейся совокупностью очень большого числа молекул можно указать параметры состояния системы и таким образом охарактеризовать макросостояние системы; но можно указать мгновенные координаты каждой молекулы (x i , y i , z i) и скорости перемещения по всем трем направлениям Vx i , Vy i , Vz i , т.е. охарактеризовать микросостояние системы. Каждому макросостоянию отвечает огромное число микросостояний. Число микросостояний, соответствующее макроскопическому состоянию определяется точными величинами параметров состояния и обозначается через W - термодинамическая вероятность состояния системы.

    Термодинамическая вероятность состояния системы, состоящей всего из 10 молекул газа примерно 1000, а ведь только в 1 см 3 газа содержится 2,7 ∙ 10 19 молекул (н.у.). Поэтому в термодинамике используют не величину W , а ее логарифм lnW . Последнему можно придать размерность (Дж/К) , умножив на константу Больцмана К :

    W , где =1, 38 · 10 -23 Дж/К,

    где N A – число Авогадро

    Величину S называют энтропией системы. Энтропия – термодинамическая функция состояния системы.

    Если изолированная система находится в макроскопическом состоянии 1 , соответствующем W 1 микроскопических состояний и если она может перейти в макроскопическое состояние 2 , число микроскопических состояний которого W 2 , то система будет иметь тенденцию перейти в состояние 2 при условии, что W 2 > W 1

    Система спонтанно стремится к состоянию, которому в микроскопическом масштабе соответствует наибольшее число возможностей реализации.

    Например, при расширении идеального газа в пустоту конечное состояние (с большим объемом по сравнению с начальным состоянием) включает гораздо большее число микросостояний просто потому, что молекулы могут принимать большее число положений в пространстве.

    Когда в изолированной системе происходит самопроизвольный процесс, число микроскопических состояний W возрастает; тоже самое можно сказать об энтропии системы. При возрастании числа микроскопических состояний W , связанных с макроскопическим состоянием системы, энтропия увеличивается.

    Например, рассмотрим термодинамическое состояние 1 моль воды (18 г H 2 O ) при стандартных условиях. Пусть W (ж) - термодинамическая вероятность состояния этой системы. При понижении температуры до 0 ºС вода замерзает, превращается в лед; при этом молекулы воды как бы закрепляются в узлах кристаллической решетки и термодинамическая вероятность состояния системы уменьшается; W (к) < W (ж). Следовательно, падает и энтропия системы: (к) < (ж). Наоборот при повышении температуры до 100º С вода закипает и превращается в пар; при этом термодинамическая вероятность состояния системы увеличивается: W (г) > W (ж) , следовательно, растет и энтропия системы:

    (г) > (ж).

    Энтропия, таким образом, является мерой неупорядоченности состояния системы. Действительно, единственному микроскопическому состоянию (W = 1 ) будет соответствовать полная упорядоченность и нулевая энтропия, т.е. известны положение, скорость, энергия каждой частицы, и все эти микроскопические характеристики будут оставаться постоянными во времени.

    Второй закон термодинамики можно сформулировать следующим образом:

    Изолированная система стремится достигнуть наиболее вероятного состояния, т.е. макроскопического состояния, соответствующего наибольшему числу микроскопических состояний.

    В изолированных системах самопроизвольно идут только те процессы, которые сопровождаются ростом энтропии системы: Δ S > 0 (Δ S = S 2 – S 1).

    Энтропия чистых веществ, существующих в виде идеальных кристаллов при температуре абсолютного нуля равна нулю. Это значит, что при абсолютном нуле достигается полная упорядоченность.

    Второй закон термодинамики

    Второй закон термодинамики устанавливает критерии, позволяющие определить направление самопроизвольного протекания процессов.

    Самопроизвольными называют процессы, которые протекают в системе без затраты энергии извне.

    Процессы бывают обратимыми и необратимыми. Необратимые процессы идут самопроизвольно лишь в одном направлении. После протекания данных процессов, сопровождающихся изменениями в системе и окружающей среде, невозможно вернуть одновременно и систему и окружающую среду в исходное состояние.

    Обратимыми являются процессы, после которых систему и окружающую среду можно вернуть в исходное состояние.

    Второй закон термодинамики имеет несколько формулировок, в варианте, предложенном Клаузиусом, он выглядит следующим образом: невозможен самопроизвольный переход теплоты от холодного тела к горячему.

    Физический смысл второго закона термодинамики заключается в том, что любой самопроизвольный процесс протекает в направлении, при котором система из менее вероятного состояния переходит в более вероятное состояние. Другими словами, самопроизвольному протеканию процесса способствует увеличение неупорядоченности в системе.

    Для характеристики меры неупорядоченности используется термодинамическая функция – энтропия S , которая связана с термодинамической вероятностью системы формулой Больцмана:

    S = k · lnW, (25)

    где k – постоянная Больцмана.

    Под термодинамической вероятностью W понимают число равновероятных микроскопических состояний, которыми может быть реализовано данное макроскопическое состояние системы. Для определения термодинамической вероятности системы необходимо найти число различных вариантов положений всех частиц системы в пространстве.

    Энтропия является количественной мерой беспорядка в системе. Чем больше W, тем хаотичнее система, тем больше величина энтропии. Нагревание вещества приводит к увеличению энтропии, а охлаждение – к уменьшению. При приближении к абсолютному нулю (-273ºС) энтропия стремится к нулю, что позволяет определить абсолютные значения энтропии различных веществ, значения которых при стандартных условиях представлены в таблицах. Следует отметить, что в отличие от энтальпии образования, энтропия простого вещества, даже находящегося в кристаллическом состоянии, не равна нулю, т.к. при температуре, отличающейся от абсолютного нуля, макросостояние кристалла может быть реализовано не единственным макросостоянием, а большим числом равновероятных состояний.

    Другая формулировка второго закона термодинамики выглядит так: полная энтропия всегда увеличивается в самопроизвольном процессе.

    Увеличение энтропии ΔS при протекании процесса должно превышать или быть равным отношению количества теплоты Q, переданного системе, к температуре Т, при которой теплота передаётся:

    Уравнение (26) является математической записью второго начала термодинамики . В данном уравнении знак неравенства относится к необратимым самопроизвольным процессам, а знак равенства – к обратимым процессам.

    Согласно уравнению (26), изменение энтропии при обратимом переходе системы из состояния 1 в состояние 2 можно определить как:

    ΔS = S 2 – S 1 = . (27)

    Фазовые переходы сопровождаются тепловым эффектом, называемым теплотой фазового перехода ΔН ф.п. , и являются изотермическими процессами (Т ф.п. = const). Для фазового перехода одного моля вещества изменение энтропии равно:

    ΔS ф.п. = . (28)

    В процессах плавления, испарения жидкости или сублимации вещества энтропия увеличивается, так как разрушается упорядоченная кристаллическая решётка. Обратные процессы: кристаллизации, конденсации, десублимации сопровождаются уменьшением неупорядоченности в системе, и следовательно, уменьшением энтропии.

    При изменении температуры вещества от Т 1 до Т 2 при постоянном давлении изменение энтропии определяется по формуле:

    поскольку С р = const, то

    ΔS = С р · ln . (30)

    Для изохорных процессов

    при С v = const

    ΔS = С v · ln . (32)

    Стандартной энтропией ΔS называется энтропия 1 моля вещества в стандартных условиях. Изменение стандартной энтропии ΔS при протекании химической реакции можно рассчитать по уравнению, основываясь на следствии из закона Гесса:

    Наиболее хаотичной формой вещества является газообразное состояние, поэтому если в результате химической реакции число молей газа увеличивается, то хаотичность, а следовательно, и энтропия системы возрастает.

    Обычно определяют не абсолютн6ое значение энтропии, а её изменение (S 2 – S 1) в том или ином процессе. Для вычисления изменения энтропии при переходе одного моля идеального газа из одного состояния в другое используют формулы.