Изобретение относится к области иммунологии. Нативную культуру Y.pestis выращивают методом глубинного культивирования. Затем отбирают осадок и подвергают его микрофильтрации. Микрофильтрацию осуществляют с размером пор 0,2 мкм в режиме тангенциального потока жидкости при рабочем давлении 0,15-0,2 МПа и производительности его фильтрату 6-8 дм 3 ч -1 . Способ позволяет ускорить процесс получения концентрата микробных клеток и одновременно увеличить выход концентрата с единицы объема среды. 3 табл.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Изобретение относится к технологии производства медицинских иммуно-биологических препаратов, а именно к способам получения концентрата микробных клеток в производстве чумной живой сухой вакцины. Известен способ получения концентрата микробных клеток Y.pestis путем выращивания микробной массы на плотных питательных средах и смыва ее средой высушивания (Регламент производства 37-86 "Вакцина чумная живая сухая"). Общим с заявляемым способом является получение концентрата микробных клеток, пригодного для приготовления чумных вакцин. К недостаткам данного способа следует отнести необходимость смыва микробной массы с плотной питательной среды, вследствие чего в микробную взвесь попадают остатки питательной среды и продукты метаболизма, что отрицательно сказывается на качестве вакцин. Наиболее близким к заявляемому является способ получения концентрата микробных клеток в производстве вакцины чумной живой сухой (Регламент производства 377-97 "Вакцина чумная живая сухая"), предусматривающий выращивание нативной культуры чумного микроба, первичное осаждение микробной биомассы в аппарате-ферментере в течение 6 ч при температуре 18...20 o С, отбор осадка в аппарат-осадитель или 20-литровые бутыли и концентрирование осаждением в течение 18...48 ч при температуре 4...8 o С. Выход концентрата составляет 2... 3% от объема среды. Общим с заявляемым способом является получение концентрата микробных клеток, пригодного для приготовления чумных вакцин. К недостаткам данного способа следует отнести его продолжительность и относительно низкий выход концентрата с единицы объема среды. Задачей изобретения является ускорение процесса получения концентрата микробных клеток с одновременным увеличением выхода концентрата с единицы объема среды. Поставленная задача достигается тем, что концентрирование микробной массы осуществляют путем микрофильтрации культуры чумного микроба через мембраны с размером пор 0,2 мкм в режиме тангенциального потока жидкости. Сравнение существенных признаков предлагаемого технического решения и прототипа показывает, что общим для них является процесс культивирования микробных клеток в жидкой питательной среде, а также процесс первичного осаждения биомассы непосредственно в аппарате-ферментере. Отличием предлагаемого способа является то, что процеcc получения концентрата микробных клеток в производстве чумных вакцин осуществляют путем микрофильтрации культуры чумного микроба в режиме тангенциального потока жидкости через мембраны с размером пор 0,2 мкм. Возможность использования микрофильтрационного концентрирования микробных клеток в производстве чумных вакцин установлена нами экспериментальным путем и неизвестна из доступных источников информации. Сущность предложенного способа заключается в следующем. Нативную культуру вакцинного штамма чумного микроба после завершения процесса культивирования оставляют в аппарате-ферментере для первичного осаждения на 6 ч. Осаждение проходит при температуре 18...20 o С. Далее отбирается образовавшийся осадок в 20-литровые бутыли и подвергается микрофильтрации на мембранах с размером пор 0,2 мкм при температуре 18...20 o С, рабочем давлении 0,15. ..0,2 МПа, производительности по фильтрату 6...8 дм 3 ч -1 . Характеристика концентрата микробных клеток, полученного указанным способом, представлена в табл.1. В качестве образца сравнения дана характеристика осадка микробных клеток способа-прототипа по РП 377-97. По результатам, представленным в табл.1, видно, что концентрат микробных клеток, полученный с использованием метода микрофильтрации, по своей характеристике не уступает приготовленному традиционным способом и соответствует требованиям НТД. Наличие причинно-следственной связи между совокупностью существенных признаков заявляемого объекта и достигаемым техническим результатом, представлено в табл.2. Изобретение позволяет получать концентрат микробных клеток, по своим физико-химическим и биологическим характеристикам пригодный для использования в производстве чумных вакцин. Возможность осуществления заявляемого изобретения показана следующими примерами. Пример 1. Получение концентрата микробных клеток. Нативная культура Y. pestis штамма ЕВ, выращенная методом глубинного культивирования в аппарате-ферментере V=0,250 м 3 в течение 27 ч при температуре 26...28 o С, имеет следующие характеристики: рН=7,4 ед. рН, концентрация микробных клеток (по ОСО мутности ГИСК им. Л.А.Тарасовича) 40 млрд. кл. мл -1 , ПМФ отсутствует. После завершения процесса культивирования микробную суспензию оставляют в аппарате-ферментере на 6 ч при температуре 18...20 o С. Затем отбирают осадок в объеме 40 л в две 20-литровые бутыли и подвергают его микрофильтрации на ультра- микрофильтрационной установке "Сартокон-мини" через мембраны с размером пор 0,2 мкм при температуре 18...20 o С, рабочем давлении 0,15. . . 0,2 МПа, производительности по фильтрату 6...8 дм 3 ч -1 . В процессе фильтрации, после сокращения объема микробного осадка втрое, через каждые 10 мин отбирают стерильно пробы в объеме 5 мл для определения концентрации микробов по ОСО мутности ГИСК им. Л.А.Тарасовича. При достижении концентрации 150. . .170 млрд. кл. мл -1 процесс микрофильтрации прекращают. Общая продолжительность концентрирования двух 20-литровых бутылей составляет 12. . .18 ч. Выход концентрата микробных клеток 8...10 л (3,5...4% от объема среды). Пример 2. Концентрирование выбракованного полуфабриката чумной вакцины (по концентрации микробных клеток). Культивирование микробов Y. pestis проводится как указано в примере 1, однако вследствие ряда причин не удается вырастить нативную культуру с требуемой по регламенту концентрацией микробных клеток (по ОСО мутности ГИСК им. Л. А.Тарасовича), что приводит к выбраковке данной культуры. Применение метода микрофильтрации позволяет сконцентрировать нативную культуру с низким содержанием микробных клеток до микробной взвеси с требуемой концентрацией. Первичное осаждение и микрофильтрация проводятся, как указано в примере 1. Продолжительность процесса микрофильтрационного концентрирования составляет 10. . . 14 ч. Выход концентрата микробных клеток 4...5 л (1,5...2% от объема среды). Пример 3. Концентрирование плохоосаждаемых (седиментационно-устойчивых) культур. Культивирование микробов Y.pestis проводится, как указано в примере 1. Нативная культура по своим характеристикам соответствует требованиям регламента, но при осаждении в аппаратах-осадителях или 20-литровых бутылях по истечении 48 ч осадок не сформирован, что не позволяет получить микробную взвесь с требуемой концентрацией микробов. Весь объем неосаждаемой культуры подвергают микрофильтрации, как указано в примере 1, что позволяет получить микробную взвесь с требуемыми характеристиками. Выход концентрата микробных клеток составляет 8...10 л (3,5...4% от объема среды). Пример 4. Характеристика вакцины чумной живой сухой, приготовленной с применением заявляемого способа получения концентрата микробных клеток и способа-прототипа. Характеристика вакцины чумной живой сухой, приготовленной с применением заявляемого способа получения концентрата микробных клеток и способа-прототипа, дана в табл.3.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения концентрата микробных клеток в производстве чумных вакцин, предусматривающий осаждение биомассы в аппарате-ферментере и концентрирование, отличающийся тем, что концентрирование осуществляют микрофильтрацией через мембраны с размером пор 0,2 мкм в режиме тангенциального потока жидкости при рабочем давлении 0,15-0,2 МПа и производительности по фильтрату 6-8 дм 3 ч -1 .

ВАКЦИНЫ (лат. vaccinus коровий) - препараты, получаемые из бактерий, вирусов и других микроорганизмов или продуктов их жизнедеятельности и применяемые для активной иммунизации людей и животных с целью специфической профилактики и лечения инфекционных болезней.

История

Еще в древние времена было установлено, что перенесенная однажды заразная болезнь, напр, оспа, бубонная чума, предохраняет человека от повторного заболевания. В последующем эти наблюдения развились в учение о постинфекционном иммунитете (см.), т. е. о повышенной специфической устойчивости против возбудителя, наступающей после перенесения вызванной им инфекции.

Давно было замечено, что люди, перенесшие болезнь в легкой форме, становятся невосприимчивыми к ней. На основе этих наблюдений у многих народов применялось искусственное заражение здоровых людей инфекционным материалом в надежде на легкое течение болезни. Например, с этой целью китайцы вкладывали в нос здоровым людям высушенные и размельченные оспенные струпья от больных. В Индии размельченные оспенные струпья прикладывали к коже, предварительно натертой до ссадин. В Грузии с той же целью делали уколы кожи иглами, смоченными оспенным гноем. Искусственную прививку оспы (вариоляцию) стали применять и в Европе, в частности в России, в 18 в., когда эпидемии оспы приняли угрожающие размеры. Однако этот метод предохранительных прививок не оправдался: наряду с легкими формами заболевания у многих привитая оспа вызывала тяжелое заболевание, а сами привитые становились источниками заражения окружающих. Поэтому в начале 19 в. вариоляция в европейских странах была запрещена. Африканские народы продолжали применять ее и в середине 19 в.

В связи с распространением вариоляции искусственные прививки заразного материала предпринимались и при некоторых других инфекциях: кори, скарлатине, дифтерии, холере, ветряной оспе. В России в 18 в. Д. С. Самойлович предлагал прививать гной из чумных бубонов лицам, непосредственно соприкасающимся с больными. Указанные попытки предохранения людей от инфекционных болезней сохраняют теперь лишь исторический интерес.

Введение в организм человека или домашних животных современных В. имеет целью добиться выработки прививочного иммунитета, аналогичного постинфекционному иммунитету, но с исключением опасности развития инфекционной болезни в результате прививок (см. Вакцинация). Впервые такая В. для иммунизации людей против оспы была получена английским врачом Э. Дженнером с использованием инфекционного материала от коров (см. Оспопрививание). Дата публикации труда Э. Дженнера (1798) считается началом развития вакцинопрофилактики, к-рая в течение первой половины 19 в. получила широкое распространение в большинстве стран мира.

Дальнейшее развитие учения о В. связано с работами основоположника современной микробиологии - Л. Пастера, который установил возможность искусственного ослабления вирулентности патогенных микробов (см. Аттенуация) и применения таких «аттенуированных» возбудителей для предохранительных прививок против холеры кур, сибирской язвы с.-х. животных и бешенства. Сопоставив свои наблюдения с открытой Э. Дженнером возможностью защиты людей от натуральной оспы прививкой им коровьей оспы, Л. Пастер создал учение о предохранительных прививках, а применяемые для этой цели препараты предложил в честь открытия Э. Дженнера называть В.

На последующих этапах развития учения о вакцинах большое значение имели работы Η. Ф. Гамалеи (1888), Р. Пфейффера и В. Колле (1898), показавшие возможность создания иммунитета не только прививками ослабленных живых микробов, но и убитыми культурами возбудителей болезней. Η. Ф. Гамалеи показал также принципиальную возможность иммунизации химическими В., получаемыми извлечением из убитых микробов иммунизирующих фракций. Большое значение имело открытие Г. Рамоном в 1923 г. нового вида вакцинирующих препаратов - анатоксинов.

Виды вакцин

Известны следующие виды вакцин: а) живые; б) убитые корпускулярные; в) химические; г) анатоксины (см.). Препараты, предназначенные для иммунизации против какой-либо одной инфекционной болезни, называют моновакцинами (напр., холерная или брюшнотифозная моновакцины). Дивакцины - препараты для иммунизации против двух инфекций (напр., против тифа и паратифа В). Большое значение имеет разработка препаратов, предназначенных для одновременной вакцинации против нескольких инфекционных болезней. Такие препараты, называемые ассоциированными В., очень облегчают организацию профилактических прививок в противоэпидемической практике. Примером ассоциированной вакцины может служить вакцина АКДС, в состав к-рой входит антиген коклюшного микроба, столбнячный и дифтерийный анатоксины. При правильном сочетании компонентов ассоциированных В. они способны создавать иммунитет в отношении каждой инфекции, практически не уступающей иммунитету, получаемому в результате применения отдельных моновакцин. В иммунологической практике применяется также термин «поливалентные» В., когда препарат предназначен для прививок против одной инфекции, но включает несколько разновидностей (серологических типов) возбудителя, напр, поливалентные В. против гриппа или против лептоспирозов. В отличие от применения ассоциированных В. в форме единого препарата, принято называть комбинированной вакцинацией введение нескольких В. одновременно, но в разные участки тела вакцинируемого.

С целью повышения иммуногенности В., особенно химических и анатоксинов, их применяют в форме препаратов, адсорбированных на минеральных коллоидах, чаще всего на геле гидроокиси алюминия или фосфата алюминия. Применение адсорбированных В. удлиняет период воздействия антигенов (см.) на организм привитого; кроме того, адсорбенты проявляют неспецифическое стимулирующее действие на иммуногенез (см. Адъюванты). Адсорбирование некоторых химических В. (напр., брюшнотифозной) способствует снижению их высокой реактогенности.

Каждый из указанных выше видов В. имеет свои особенности, положительные и отрицательные свойства.

Живые вакцины

Для приготовления живых В. применяют наследственно измененные штаммы (мутанты) патогенных микробов, лишенные способности вызывать специфическое заболевание у вакцинируемого, но сохранившие свойство размножаться в привитом организме, заселять в большей или меньшей степени лимф, аппарат и внутренние органы, вызывая скрытый, без клинического заболевания, инфекционный процесс - вакцинную инфекцию. Привитой организм может реагировать на вакцинную инфекцию местным воспалительным процессом (преимущественно при накожном способе вакцинации против оспы, туляремии и других инфекций), а иногда и общей непродолжительной температурной реакцией. Некоторые реактивные явления при этом могут быть обнаружены при лабораторных исследованиях крови привитых. Вакцинная инфекция, даже если она протекает без видимых проявлений, влечет за собой общую перестройку реактивности организма, выражающуюся в выработке специфического иммунитета против заболевания, вызываемого патогенными формами того же вида микроба.

Выраженность и продолжительность поствакцинального иммунитета различны и зависят не только от качества живой вакцины, но и от иммунологических особенностей отдельных инфекционных болезней. Так, напр., оспа, туляремия, желтая лихорадка ведут к развитию практически пожизненной невосприимчивости у переболевших. В соответствии с этим высокими иммунизирующими свойствами обладают и живые В. против названных болезней. В отличие от этого, трудно рассчитывать на получение высокоиммуногенных В., напр, против гриппа или дизентерии, когда сами эти заболевания не создают достаточно длительного и напряженного постинфекционного иммунитета.

Среди других видов вакцинных препаратов живые В. способны создавать у привитых наиболее выраженный поствакцинальный иммунитет, приближающийся по напряженности к постинфекционному иммунитету, но продолжительность его все же меньше. Напр., высокоэффективные В. против оспы и туляремии способны обеспечить устойчивость привитого человека против заражения на протяжении 5-7 лет, но не пожизненно. После прививок против гриппа лучшими образцами живых В. выраженный иммунитет сохраняется в ближайшие 6-8 мес.; постинфекционный иммунитет против гриппа резко падает к полутора - двум годам после болезни.

Вакцинные штаммы для приготовления живых В. получают различными путями. Э. Дженнер отобрал для вакцинации против оспы людей субстрат, содержащий вирус коровьей оспы, обладающий полным антигенным сходством с вирусом оспы человека, но маловирулентный для людей. Подобным образом отобран бруцеллезный вакцинный штамм № 19, относящийся к слабопатогенному виду Br. abortus, вызывающий бессимптомную инфекцию у привитых с последующим развитием иммунитета ко всем видам бруцелл, в т. ч. и к наиболее опасному для человека виду Br. melitensis. Однако отбор гетерогенных штаммов относительно редко позволяет найти вакцинные штаммы нужного качества. Чаще приходится прибегать к экспериментальному изменению свойств патогенных микробов, добиваясь лишения их патогенности для человека или вакцинируемых домашних животных при сохранении иммуногенности, связанной с антигенной полноценностью вакцинного штамма и с его способностью размножаться в привитом организме и вызывать бессимптомную вакцинную инфекцию.

Методы направленного изменения биол, свойств микробов для получения вакцинных штаммов разнообразны, но общей чертой этих методов является более или менее длительное культивирование возбудителя вне организма животного, чувствительного к данной инфекции. Для ускорения процесса изменчивости экспериментаторы применяют те или иные воздействия на культуры микробов. Так, Л. Пастер и Л. С. Ценковский для получения сибиреяз венных вакцинных штаммов культивировали возбудителя в питательной среде при повышенной против оптимума температуре;

А. Кальметт и Герен (С. Guerin) длительно, в течение 13 лет, культивировали туберкулезную палочку в среде с желчью, в результате чего получили всемирно известный вакцинный штамм БЦЖ (см.). Подобный прием длительного культивирования в неблагоприятных условиях среды применил Н. А. Гайский для получения высокоиммуногенного вакцинного туляремийного штамма. Иногда лабораторные культуры патогенных микробов утрачивают свою патогенность «спонтанно», т. е. под влиянием причин, которые не учитываются экспериментатором. Так был получен чумной вакцинный штамм EV [Жирар и Робик (G. Girard, J. Robie)], бруцеллезный вакцинный штамм № 19 [Коттон и Букк (W. Cotton, J. Buck)], слабореактогенный вариант этого штамма № 19 В А (П. А. Вершилова), применяемый в СССР для вакцинации людей.

Спонтанной утрате патогенности микробных культур предшествует появление в их популяции отдельных мутантов с качеством вакцинных штаммов. Поэтому вполне оправдан и перспективен метод селекции вакцинных клонов из лабораторных культур возбудителей, популяции которых в целом еще сохраняют патогенность. Такая селекция позволила H. Н. Гинсбургу получить сибиреязвенный вакцинный штамм - мутант СТИ-1, пригодный для вакцинации не только животных, но и людей. Аналогичный вакцинный штамм № 3 был получен А. Л. Тамариным, а Р. А. Салтыков селекционировал из патогенной культуры возбудителя туляремии вакцинный штамм № 53.

Вакцинные штаммы, полученные любым методом, должны быть апатогенны, т. е. неспособны вызывать специфическое инфекционное заболевание, в отношении человека и домашних животных, подвергающихся профилактической вакцинации. Но такие штаммы могут сохранять в той или иной мере ослабленную вирулентность (см.) для мелких лабораторных животных. Напр., апатогенные для человека туляремийные и сибиреязвенные вакцинные штаммы проявляют ослабленную вирулентность при введении белым мышам; часть животных, привитых массивными дозами живой вакцины, погибает. Это свойство живых В. не вполне удачно принято называть «остаточной вирулентностью». С наличием ее нередко связана и иммунологическая активность вакцинного штамма.

Для получения вакцинных штаммов вирусов применяется длительное пассирование их в организме одного и того же вида животных, иногда не являющихся естественными хозяевами данного вируса. Так, антирабическая вакцина готовится из штамма фиксированного вируса (virus fixe) Л. Пастера, полученного из вируса уличного бешенства, многократно пассированного через мозг кролика (см. Антирабические прививки). В результате этого резко возросла вирулентность вируса для кролика и снизилась вирулентность для других животных, а также для человека. Таким же путем вирус желтой лихорадки был превращен в вакцинный штамм путем длительных внутримозговых пассажей на мышах (штаммы Дакар и 17Д).

Заражение животных в течение длительного периода оставалось единственным методом культивирования вирусов. Это имело место до разработки новых методов их культивирования. Одним из таких методов явился метод культивирования вирусов на куриных эмбрионах. Использование данного метода позволило адаптировать к куриным эмбрионам высокоаттенуированный штамм 17Д вируса желтой лихорадки и начать широкое изготовление В. против этого заболевания. Метод культивирования на куриных эмбрионах позволил также получать вакцинные штаммы вирусов гриппа, паротита и других вирусов, патогенных для человека и животных.

Еще более существенные достижения в деле получения вакцинных штаммов вирусов стали возможны после открытия Эндерса, Уэллера и Роббинса (J. Enders, Т. Weller, F. Robbins, 1949), предложивших выращивать вирус полиомиелита в тканевых культурах, и введения в вирусологию однослойных клеточных культур и метода бляшек [Дульбекко и Фогт (R. Dulbecco, М. Vogt, 1954)]. Эти открытия позволили осуществить селекцию вариантов вирусов и получать чистые клоны - потомства одной или немногих вирусных частиц, обладающих определенными, наследственно закрепленными биол, свойствами. Сейбину (A. Sabin, 1954), использовавшему указанные методы, удалось получить мутанты вируса полиомиелита, характеризующиеся пониженной вирулентностью, и вывести вакцинные штаммы, пригодные для массового производства живой полиомиелитной вакцины. В 1954 г. те же методы были использованы для культивирования вируса кори, для получения вакцинного штамма этого вируса и затем для производства живой коревой В.

Метод клеточных культур с успехом используется как для получения новых вакцинных штаммов различных вирусов, так и для усовершенствования существующих.

Еще одним методом получения вакцинных штаммов вирусов является метод, основанный на применении рекомбинации (генетического скрещивания).

Так, напр., оказалось возможным получить рекомбинант, используемый как вакцинный штамм вируса гриппа А при взаимодействии авирулентного мутанта вируса гриппа, содержащего гемагглютинин H2 и нейраминидазу N2, и вирулентного штамма Гонконг, содержащего гемагглютинин H3 и нейраминидазу N2. Полученный рекомбинант содержал гемагглютинин H3 вирулентного вируса Гонконг и сохранил авирулентность мутанта.

Живые бактерийные, вирусные и риккетсиозные В. в последние 20- 25 лет наиболее широко изучаются и внедрены в противоэпидемическую практику в Советском Союзе. Применяются в практике живые В. против туберкулеза, бруцеллеза, туляремии, сибирской язвы, чумы, оспы, полиомиелита, кори, желтой лихорадки, гриппа, клещевого энцефалита, Ку-лихорадки, сыпного тифа. Изучаются живые В. против дизентерии, эпидемического паротита, холеры, брюшного тифа и некоторых других инфекционных болезней.

Методы применения живых В. разнообразны: подкожный (большинство В.), накожный или внутрикожный (В. против оспы, туляремии, чумы, бруцеллеза, сибирской язвы, БЦЖ), интраназальный (вакцина против гриппа); ингаляционный (вакцина против чумы); оральный или энтеральный (вакцина против полиомиелита, в стадии разработки - против дизентерии, брюшного тифа, чумы, некоторых вирусных инфекций). Живые В. при первичной иммунизации вводят однократно, за исключением В. против полиомиелита, где повторная вакцинация связана с введением вакцинных штаммов разных типов. В последние годы все шире изучается метод массовой вакцинации с помощью безыгольных (струйных) инъекторов (см. Инъектор безыгольный).

Основной ценностью живых В. является их высокая иммуногенность. При ряде инфекций, в первую очередь особо опасных (оспа, желтая лихорадка, чума, туляремия), живые В. являются единственным эффективным видом В., т. к. убитыми микробными телами или химическими В. не удается воспроизвести достаточно напряженного иммунитета против этих заболеваний. Реактогенность живых В. в целом не превышает реактогенности других прививочных препаратов. За время многолетнего широкого применения живых В. в СССР не наблюдалось случаев реверсии вирулентных свойств апробированных вакцинных штаммов.

К числу положительных качеств живых В. относятся также однократность их применения и возможность использования разнообразных способов аппликации.

К недостаткам живых В. следует отнести их относительно малую устойчивость при нарушении режима хранения. Эффективность живых В. определяется наличием в них живых вакцинных микробов, а естественное отмирание последних снижает активность В. Однако выпускаемые сухие живые В. при соблюдении температурного режима их хранения (не выше 8°) по срокам годности практически не уступают другим видам В. Недостатком некоторых живых В. (оспенная В., антирабическая) является возможность появления у отдельных привитых индивидуумов неврологических осложнений (см. Поствакцинальные осложнения). Эти поствакцинальные осложнения весьма редки, и их удается в значительной мере избежать при строгом соблюдении технологии приготовления и правил применения названных В.

Убитые вакцины

Убитые В. получают инактивацией патогенных бактерий и вирусов, применяя для этого различные воздействия на культуры физ. или хим. характера. Соответственно фактору, обеспечивающему инактивацию живых микробов, готовят гретые В., формалиновые, ацетоновые, спиртовые, феноловые. Изучаются также другие способы инактивации, напр, ультрафиолетовыми лучами, гамма-излучением, воздействием перекиси водорода и другими хим. агентами. Для получения убитых В. применяют высокопатогенные, полноценные в антигенном отношении штаммы соответствующих видов возбудителей.

По своей эффективности убитые В., как правило, уступают живым, однако некоторые из них имеют достаточно высокую иммуногенность, предохраняя привитых от заболевания или уменьшая тяжесть течения последнего.

Т. к. инактивация микробов упомянутыми выше воздействиями нередко сопровождается значительным снижением иммуногенности В. в связи с денатурацией антигенов, предпринимались многочисленные попытки применения щадящих способов инактивации с прогреванием микробных культур в присутствии сахарозы, молока, коллоидных сред. Однако полученные такими способами АД-вакцины, гала-вакцины и др., не показав существенных преимуществ, не вошли в практику.

В отличие от живых В., большинство которых применяется путем однократной прививки, убитые В. требуют двух или трех прививок. Так, напр., убитую брюшнотифозную В. вводят подкожно дважды с интервалом 25- 30 дней и третью, ревакцинирующую, инъекцию проводят через 6-9 мес. Вакцинацию против коклюша убитой В. проводят трехкратно, внутримышечно, с интервалом 30- 40 дней. Холерную В. вводят дважды.

В СССР применяют убитые В. против брюшного тифа и паратифа В, против холеры, коклюша, лептоспирозов и клещевого энцефалита. В зарубежной практике применяют также убитые В. против гриппа, полиомиелита.

Основным способом введения убитых В. являются подкожные или внутримышечные инъекции препарата. Изучаются методы энтеральной вакцинации против брюшного тифа и холеры.

Преимуществом убитых В. является относительная простота их приготовления, поскольку для этого не требуются специально и длительно изученные вакцинные штаммы, а также сравнительно большая стабильность при хранении. Существенным недостатком этих препаратов является слабая иммуногенность, необходимость повторных инъекций в курсе вакцинации, ограниченность способов аппликации В.

Химические вакцины

Химические В., применяемые для профилактики инфекционных болезней, не вполне соответствуют своему принятому в практике названию, т. к. не являются каким-либо химически определенным веществом. Эти препараты представляют собой антигены или группы антигенов, извлеченные из микробных культур тем или иным способом и в той или иной степени очищенные от балластных неиммунизирующих веществ. В одних случаях извлеченные антигены являются в основном бактерийными эндотоксинами (брюшнотифозная хим. В.), получаемыми обработкой культур способами, сходными с методом получения так наз. полных антигенов Буавена. Другие химические В. представляют собой «протективные антигены», продуцируемые нек-рыми микробами в процессе жизнедеятельности в организме животных или в специальных питательных средах при соответствующих режимах культивирования (напр., протективный антиген сибиреязвенных бацилл).

Из числа химических В. в СССР применяется брюшнотифозная В. в сочетании с хим. паратифозной В вакциной или со столбнячным анатоксином. Для вакцинации детских контингентов применяют другую хим. вакцину - Vi-антиген брюшнотифозных микробов (см. Vi-антиген).

В зарубежной практике имеет ограниченное применение для иммунизации некоторых профессиональных контингентов хим. сибиреязвенная В., представляющая собой протективный антиген сибиреязвенных бацилл, получаемый в специальных условиях культивирования и сорбированный на геле гидроокиси алюминия. Двукратное введение этой В. создает у привитых иммунитет длительностью 6-7 мес. Повторные ревакцинации приводят к выраженным аллергическим реакциям на прививки.

Применяют перечисленные В. для профилактики, т. е. для иммунизации здоровых людей с целью выработки ими иммунитета против того или иного заболевания (см. табл.). Некоторые В. применяют также при терапии хрон, инфекционных болезней с целью стимуляции выработки организмом более выраженного специфического иммунитета (см. Вакцинотерапия). Напр., при лечении хрон, бруцеллеза применяют убитую В. (в отличие от живой профилактической В.). М. С. Маргулис, в. д. Соловьев и А. К. Шубладзе предложили лечебную В. против множественного (рассеянного) склероза. Промежуточное положение между профилактическими и лечебными В. занимает антирабическая В., которую применяют для предупреждения заболевания бешенством лиц, зараженных и находящихся в инкубационном периоде. С лечебной целью применяют также аутовакцину (см.), приготовляемую путем инактивации культур микробов, выделенных от больного.

КРАТКАЯ ХАРАКТЕРИСТИКА НЕКОТОРЫХ ВАКЦИН, ПРИМЕНЯЕМЫХ ДЛЯ ПРОФИЛАКТИКИ ИНФЕКЦИОННЫХ БОЛЕЗНЕЙ

Исходный материал, принципы изготовления

Способ применения

Эффективность

Реактогенность

русское название

латинское название

Сухая антирабическая вакцина типа Ферми

Vaccinum antirabicum siccum Fermi

Фиксированный вирус бешенства, штамм «Москва», пассированный в мозге барана и инактивированный фенолом

Подкожно

Эффективна

Умеренно реактогенна

Инактивированная культуральная антирабическая вакцина Института полиомиелита и вирусных энцефалитов АМН СССР, сухая

Vaccinum antirabicum inactivatum culturale

Фиксированный вирус бешенства, штамм «Внуково-32», выращенный на первичной культуре ткани почек сирийского хомяка, инактивированный фенолом или ультрафиолетом

Подкожно

Эффективна

Слабо реактогенна

Бруцеллезная живая сухая вакцина

Vaccinum brucellicum vivum (siccum)

Агаровая культура вакцинного штамма Br. abortus 19-ВА, подвергнутая лиофилизации в сахарозожелатиновой среде

Эффективна

Слабо реактогенна

Брюшнотифозная спиртовая вакцина, обогащенная Vi-антигеном

Vaccinum typhosum spirituosum dodatum Vi-antigenum S.typhi

Бульонная культура штамма Ту2 4446, убитая, обогащенная Vi-ан-тигсном

Подкожно

Эффективна

Умеренно реактогенна

Химическая сорбированная тифозно-паратифозно-столбнячная вакцина (TABte), жидкая

Vaccinum typhoso-paratyphoso tetanicum chemicum adsorptum

Смесь полных антигенов бульонных культур возбудителей брюшного тифа и паратифов А и В с фильтратом бульонной культуры С1, tetani, обезвреженной формалином и теплом

Подкожно

Эффективна

Умеренно реактогенна

Живая гриппозная вакцина для интраназального применения, сухая

Vaccinum gripposum vivum

Аттенуированные вакцинные штаммы вируса гриппа А2, В, выращенные в куриных эмбрионах

Интраназально

Умеренно эффективна

Слабо реактогенна

Живая гриппозная вакцина для перорального введения, сухая

Vaccinum gripposum vivum perorale

Аттенуированные вакцинные штаммы вируса гриппа А2, В, выращенные на культуре клеток почек куриных эмбрионов

Перорально

Умеренно эффективна

Ареактогенна

Очищенный дифтерийный анатоксин, адсорбированный на гидроокиси алюминия (АД-анатоксин)

Anatoxinum diphthericum purificatum aluminii hydroxydo adsorptum

Фильтрат бульонной культуры Corynebacterium diphtheriae PW-8, обезвреженный формалином и теплом и сорбированный на гидроокиси алюминия

Подкожно

Высокоэффективен

Слабо реактогенен

Очищенный дифтерийностолбнячный анатоксин, адсорбированный на гидроокиси алюминия (АДС-анатоксин)

Anatoxinum diphthericotetanicum (purificatum aluminii hydroxydo adsorptum)

Фильтрат бульонных культур Corynebacterium diphtheriae PW-8 и С1, tetani, обезвреженный формалином и теплом и сорбированный на гидроокиси алюминия

Подкожно

Высокоэффективен

Слабо реактогенен

Адсорбированная коклюшно-дифтерийностолбнячная вакцина (АКДС-вакцина)

Vaccinum pertussico-diphthericotetanicum aluminii hydroxydo adsorptum

Смесь культур не менее 3 коклюшных штаммов основных серотипов, убитых формалином или мертиолятом, и фильтратов бульонных культур Corynebacterium diphtheriae PW-8, и Cl. tetani, обезвреженных формалином

Подкожно или внутримышечно

Высокоэффективна в отношении дифтерии и столбняка, эффективна в отношении коклюша

Умеренно реактогенна

Вакцина коревая живая, сухая

Vaccinum morbillorum vivum

Аттенуированный вакцинный штамм «Ленинград-16», выращенный на культуре клеток почек новорожденных морских свинок (ПМС) или культуре клеток эмбрионов японских перепелок (ФЭП)

Подкожно или внутрикожно

Высокоэффективна

Умеренно реактогенна

Инактивированная культуральная вакцина против клещевого энцефалита человека, жидкая или сухая

Vaccinum culturale inactivatum contra encephalitidem ixodicam hominis

Штаммы «Пан» и «Софьин», культивируемые на клетках куриных эмбрионов и инактивированные формалином

Подкожно

Эффективна

Слабо реактогенна

Лептоспирозная вакцина, жидкая

Vaccinum leptospirosum

Культуры не менее 4 серотипов патогенных лептоспир, выращенные на диет, воде с добавлением сыворотки кролика и убитые нагреванием

Подкожно

Эффективна

Умеренно реактогенна

Оспенная вакцина, сухая

Vaccinum variolae

Аттенуированные штаммы Б-51, Л-ИВП, ЭМ-63, культивируемые на коже телят

Накожно и внутрикожно

Высокоэффективна

Умеренно реактогенна

Полиомиелитная пероральная живая вакцина типов I, II, III

Vaccinum poliomyelitidis vivum perorale, typus I, II, III

Аттенуированные штаммы Сейбина I, II, III типов, культивируемые на первичной культуре клеток почки зеленой мартышки. Вакцина выпускается как в жидкой форме, так и в форме конфет-драже (антиполиодраже)

Перорально

Высокоэффективна

Ареактогенна

Сибиреязвенная живая сухая вакцина (СТИ)

Vaccinum anthracicum STI (siccum)

Агаровая споровая культура вакцинного бескапсульного штамма СТИ-1, лиофилизированная без стабилизатора

Накожно или подкожно

Эффективна

Слабо реактогенна

Очищенный столбнячный анатоксин, адсорбированный на гидроокиси алюминия (АС-анатоксин)

Anatoxinum tetanicum purificatum aluminii hydroxydo adsorptum

Фильтрат бульонной культуры С1, tetani, обезвреженный формалином и теплом и сорбированный на гидроокиси алюминия

Подкожно

Высокоэффективен

Слабо реактогенен

Анатоксин стафилококковый очищенный адсорбированный

Anatoxinum staphylococcicum purificatum adsorptum

Фильтрат бульонной культуры токсигенных штаммов стафилококка 0-15 и ВУД-46, обезвреженный формалином и сорбированный на гидроокиси алюминия

Подкожно

Эффективен

Слабо реактогенен

Сухая живая комбинированная сыпнотифозная вакцина Ε (сухая ЖКСВ-Е)

Vaccinum combinatum vivum (siccum) E contra typhum exanthematicum

Смесь аттенуированного вакцинного штамма риккетсий Провацека (Мадрид-Е), культивируемого в желточном мешке куриного эмбриона и растворимого антигена риккетсий Провацека штамма «Брейнль»

Подкожно

Эффективна

Умеренно реактогенна

Туберкулезная сухая вакцина БЦЖ для внутрикожного применения

Vaccinum BCG ad usum intracutaneum (siccum)

Культура вакцинного штамма БЦЖ, выращенная на синтетической среде и лиофилизированная

Внутрикожно

Высокоэффективна

Умеренно реактогенна

Холерная вакцина

Vaccinum cholericum

Агаровые культуры холерного вибриона и «Эль-Тор», серотипов «Инаба» и «Огава», убитые нагреванием или формалином. Вакцина выпускается в жидком или сухом виде

Подкожно

Слабо эффективна

Умеренно реактогенна

Туляремийная живая сухая вакцина

Vaccinum tularemicum vivum siccum

Агаровая культура вакцинного штамма № 15 Гайского линии НИИЭГ, лиофилизированная в Саха розо-желатиновой среде

Накожно или внутрикожно

Высокоэффективна

Слабо реактогенна

Чумная живая сухая вакцина

Vaccinum pestis vivum siccum

Агаровая или бульонная культура вакцинного штамма ЕВ линии НИИЭГ, лиофилизированная в сахарозо-желатиновой среде

Подкожно или накожно

Эффективна

Умеренно или слабо реактогенна в зависимости от способа введения

Методы приготовления

Методы приготовления В. разнообразны и определяются как биол, особенностями микробов и вирусов, из которых готовят В., так и уровнем технической оснащенности вакцинного производства, к-рое все в большей степени приобретает промышленный характер.

Бактерийные В. готовят путем выращивания соответствующих штаммов на различных, специально подобранных, жидких пли плотных (агаровых) питательных средах. Анаэробные микробы - продуценты токсинов, выращиваются в соответствующих условиях. В технологии производства многих бактерийных В. все больше отходят от лабораторных условий культивирования в стеклянных емкостях, используя большого объема реакторы и культиваторы, позволяющие одновременно получать микробную массу на тысячи и десятки тысяч прививочных доз вакцины. В значительной степени механизируются способы концентрации, очистки и другие приемы обработки микробной массы. Все живые бактериальные В. в СССР выпускают в форме лиофилизированных препаратов, высушенных из замороженного состояния в глубоком вакууме.

Риккетсиозные живые В. против Ку-лихорадки и сыпного тифа получают путем культивирования соответствующих вакцинных штаммов в развивающихся куриных эмбрионах с последующей обработкой полученных взвесей желточных мешков и лиофилизацией препарата.

Вирусные вакцины готовятся при использовании следующих методов: Производство вирусных вакцин на первичных клеточных культурах почечной ткани животных. В различных странах используют для производства вирусных В. культуры трипсинизированных почечных клеток обезьян (полиомиелитные В.), морских свинок и собак (В. против кори, краснухи и некоторых других вирусных инфекций), сирийских хомяков (антирабическая В.).

Производство вирусных вакцин на субстратах птичьего происхождения. На производстве ряда вирусных В. успешно используются куриные эмбрионы и их клеточные культуры. Так, на куриных эмбрионах или в клеточных культурах куриных эмбрионов готовят В. против гриппа, паротита, оспы, желтой лихорадки, кори, краснули, клещевого и японского энцефалитов и другие В., используемые в ветеринарной практике. Для производства некоторых вирусных В. пригодны также эмбрионы и тканевые культуры иных птиц (напр., перепелок и уток).

Производство вирусных вакцин на животных. Примерами являются производство оспенной В. (на телятах) и производство антирабической В. (на овцах и сосунках белых крыс).

Производство вирусных вакцин на диплоидных клетках человека. В ряде стран на производстве вирусных В. (против полиомиелита, кори, краснухи, оспы, бешенства и некоторых других вирусных инфекций) применяется штамм WI-38 диплоидных клеток, полученных из легочной ткани эмбриона человека. Основными преимуществами использования диплоидных клеток являются: 1) широкий спектр чувствительности этих клеток к различным вирусам; 2) экономичность производства вирусных В.; 3) отсутствие в них посторонних побочных вирусов и других микроорганизмов; 4) стандартность и стабильность клеточных линий.

Усилия исследователей направлены на выведение новых штаммов диплоидных клеток, в т. ч. пропс-ходящих из тканей животных, с целью дальнейшей разработки и внедрения в широкую практику доступных, безопасных и экономичных методов производства вирусных В.

Следует особо подчеркнуть, что любая В., предложенная для широкого применения, должна удовлетворять требованиям к частоте и тяжести побочных реакций и осложнений, связанных с вакцинацией. Важность этих требований признается ВОЗ, к-рая проводит совещания экспертов, формулирующих все требования к биол, препаратам и подчеркивающих, что безопасность препарата - главное условие при разработке В.

Производство В. в СССР сосредоточено преимущественно в крупных ин-тах вакцин и сывороток.

Качество В., выпускаемых в СССР, находится под контролем как местных контрольных органов при институтах-изготовителях. так и Государственного научно-исследовательского института стандартизации и контроля медицинских биол, препаратов им. Л. А. Тарасевича. Технология производства и контроль, а также методы применения В. регламентируются Комитетом вакцин и сывороток М3 СССР. Большое внимание уделяется стандартизации выпускаемых для практического применения В.

Вновь разрабатываемые и предлагаемые для практики В. проходят разностороннюю апробацию в Государственном институте им. Тарасевича, материалы испытаний рассматриваются Комитетом вакцин и сывороток, а при внедрении новых В. в практику соответствующая документация на них утверждается М3 СССР.

Помимо разностороннего изучения новых В. в экспериментах на животных, после установления безвредности препарата его изучают в отношении реактогенности и иммунологической эффективности в ограниченном опыте иммунизации людей. Иммунологическую эффективность В. оценивают по серологическим изменениям и кожным аллергическим пробам, наступающим у привитых людей в определенные сроки наблюдений. Следует, однако, учитывать, что эти показатели далеко не во всех случаях могут служить критериями действительной иммуногенности В., т. е. ее способности защитить привитого от заболевания соответствующей инфекционной болезнью. Поэтому глубокому и тщательному изучению подлежат коррелятивные связи между серо-аллергическими показателями у вакцинированных и наличием действительного поствакцинального иммунитета, выявляемого в опытах на животных. В создании отечественных оригинальных В. большое значение имели работы М. А. Морозова, Л. А. Тарасевича, H. Н. Гинсбурга, Н.Н. Жукова-Вережникова, Н. А. Гайского и Б. Я. Эльберта, П. А. Вершиловой, П. Ф. Здродовского, А. А. Смородинцева, В. Д. Соловьева, М. П. Чумакова, О. Г. Анджапаридзе и др.

Библиография: Безденежных И. С. и др. Практическая иммунология, М., 1969; Гинсбург H. Н. Живые вакцины (История, элементы теории, практика), М., 1969; Здродовский П. Ф. Проблемы инфекции, иммунитета и аллергии, М., 1969, библиогр.; Кравченко А. Т., Салтыков Р. А. и Резепов Ф. Ф. Практическое руководство по применению биологических препаратов, М., 1968, библиогр.; Методическое руководство по лабораторной оценке качества бактерийных и вирусных препаратов (Вакцины, анатоксины, сыворотки, бактериофаги и аллергены), под ред. С. Г. Дзагурова и др., М., 1972; Профилактика инфекций живыми вакцинами, под ред. М. И. Соколова, М., 1960, библиогр.; Рогозин И. И. и Беляков В. Д. Ассоциированная иммунизация и экстренная профилактика, Д., 1968, библиогр.

В. М. Жданов, С. Г. Дзагуров, Р. А. Салтыков.

Чума - инфекционное трансмиссивное заболевание, которое вызывается бактериями рода Иерсиний. Заболевание имело эпидемический характер в прошлом. Сейчас естественные очаги чумы не уменьшаются и охватывают около 10% суши. Заболевание протекает в нескольких клинических формах. Наиболее опасная - легочная. Больной легочной формой чумы представляет эпидемиологическую опасность для населения. Для борьбы с инфекцией разработана вакцина чумная живая сухая для инъекций, накожного скарификационного нанесения и ингаляций для профилактики чумы.

Вакцина чумная живая сухая для инъекций, накожного скарификационного нанесения и ингаляций для профилактики чумы: состав и форма выпуска

Вакцина выпускается в форме лиофилизата во флаконах объемом 2 миллилитра. В дальнейшем из этой субстанции готовится раствор для различных путей введения. В прививке используются живые ослабленные бактерии специального штамма. В процессе приготовления лиофилизата используют такие вещества: сахарозно-желатиновая среда, тиомочевина.

Препарат имеет беловато-желтоватой окрас и не должен содержать патологических примесей. После добавления физиологического раствора спустя несколько минут образуется гомогенная масса.

Фармакологическое действие вакцины

Вакцина против чумы используется для выработки специфического приобретенного иммунитета у людей, которые имеют риск заболеть данным заболеванием. В основе действия прививки лежит иммунологический ответ организма на попадание чужеродных антигенов (белков). Специфический иммунитет формируется в несколько этапов:

  • Первый - поглощение бактерий, введенных в тело человека при помощи вакцины. Эту функцию выполняют специальные клетки - макрофаги. Они находятся во всех тканях человеческого тела. Макрофаги поглощают иерсинии и ферментируют их. В результате этого бактерии теряют свою клеточную структуру и освобождаются их антигены. Иммунные клетки выводят чужеродные белки на поверхность, чтобы сведенья об их структуре получили другие клетки, а именно лимфоциты.
  • На втором этапе в работу вовлекаются Т- и В-лимфоциты. Различные виды этих клеток выполняют свои отдельные, но очень важные функции. Например, Т-лимфоциты формируют иммунологическую память, уничтожают клетки тела, пораженные бактериями или вирусами. В-лимфоциты после получения сведений о патологическом агенте превращаются в плазматические клетки. Последние выполняют одну из важнейших функций иммунитета - выработку иммуноглобулинов (антител).

В результате действия вакцины в организме человека вырабатывается значительное количество специфических антител, которые нейтрализуют возбудителя чумы. Иммуноглобулины продолжают циркулировать в крови на протяжении одного года, создавая иммунитет против инфекции. Однако их уровень постепенно снижается, поэтому при необходимости проводится ревакцинация.

Показания и подготовка для введения прививки

Показание к иммунопрофилактике чумы - наличие вспышки заболевания среди грызунов. Именно они переносчики инфекции. Вакцинацию также проводят в тех случаях, когда существует возможность заражения чумой от больного человека. Вопрос о необходимости вакцинации решается совместно с доктором. Подготовка к прививанию состоит из сбора сведений о состоянии здоровья пациента, перенесенных заболеваниях и травмах. Затем доктор проводит осмотр больного.

Важно! Термометрия - обязательная процедура перед прививанием

Когда нет противопоказаний к иммунопрофилактике, проводят прививание. Данную манипуляцию проводит доктор или специально обученный медицинский персонал.

Способ применения вакцины от чумы

Вакцинацию против чумы начинают с определения пригодности вакцины. Медработник визуально оценивает флакон с лиофилизатом на наличие трещин в стекле, изменение цвета и консистенции препарата, присутствия примесей. Затем проверяется наличие маркировки и срока годности. После лиофилизат разводится необходимым количеством физиологического раствора. Для каждого пациента используются отдельный одноразовый шприц (или игла) и стерильные перчатки.

Существует четыре способа введения вакцины. Они представлены в таблице:

Способ введения

Техника выполнения

Накожный способ

Место вакцинации: внутренняя поверхность предплечья. Кожу в месте введения препарата предварительно очищают и протирают 70%-м раствором этилового спирта. Затем специальной иглой проводят легкое соскабливание эпидермиса в трех местах. На каждое из этих мест наносят по одной капле вакцины. Через каждую из них проводят по 8 линейных поверхностных штрихов в крестообразном направлении. Штрихи должны быть неглубокими, чтобы не вызывать значительную кровоточивость. После этого препарат на протяжении нескольких секунд интенсивно втираю в кожу. Прививочная доза составляет 0,15 мл

Подкожный способ

Место прививания - нижний угол лопатки. Кожа предварительно обрабатывается раствором антисептика. 0,5 мл вакцины вводится строго подкожным методом. Достичь этого возможно только при правильном положении шприца. Угол между ним и кожей при подкожном введении должен составлять 40-45⁰. После выполнения инъекции место укола повторно обрабатывается антисептиком

Подкожный безыгольный способ

В этом случае используется специальный инъектор, который предварительно стерилизуется. Одна прививочная доза составляет 0,5 мл. Объем препарата варьирует в зависимости от возраста пациента. Инъекция проводится только в область дельтовидной мышцы

Внутрикожный безыгольный метод

Обработка кожи, как и при предыдущих методах. Прививочная доза - 0,1 мл. После введения препарата на этом месте появляется незначительная папула, которая рассасывается на протяжении последующих нескольких часов

Совет врача. В случаях, когда прививание проводилось внутрикожным или подкожным методами необходимо находиться под наблюдением медработника не менее часа. В редких случаях у пациента в ответ на прививку может возникнуть шоковое состояние

Противопоказания для введения вакцины

Противопоказание к вакцинации - наличие инфекционного заболевания в активной стадии. Прививка возможна только спустя один месяц после полного выздоровления. Вакцину нельзя применять при наличии заболеваний со стороны таких органов и систем:

  • Желудочно-кишечный тракт - язвенная болезнь желудка и двенадцатиперстной кишки.
  • Сердечно-сосудистая система - инфаркт миокарда, нестабильная стенокардия, гипертоническая болезнь ІІІ степени.
  • Мочеполовая система - заболевания, которые сопровождаются почечной недостаточностью последних стадий.

Иммунопрофилактику чумы не проводят у больных с декомпенсированным сахарным диабетом, тяжелым тиреотоксикозом, заболеваниями центральной нервной системы. Препарат не применяют на фоне использования стероидных средств и антиметаболитов.

Побочные действия и осложнения прививания

После введения препарата возникают некоторые местные проявления и изменения общего состояния пациента, которые считаются нормальными и не несут опасности. При накожном методе введения иногда возникает отечность, мелкая сыпь и инфильтрация. При внутрикожном и подкожном введении возникает покраснение кожи, припухлость в месте инъекции. Изменения состоят в недомогании, головных болях, незначительном повышении температуры тела.

К патологическим поствакцинальным реакциям относят:

  • Развитие лимфаденита - воспаления близлежащих лимфатических узлов.
  • Гипертермия - повышение температуры тела выше 38⁰ С.
  • Аллергические реакции: крапивница, анафилактический шок.

Обо всех случая возникновения поствакцинальных реакций нужно немедленно сообщить доктору.

Взаимодействие с другими иммунобиологическими препаратами

Препарат нельзя использовать параллельно с другими живыми вакцинами. Иммунопрофилактика на фоне приема иммунодепрессантов (средств, которые угнетают иммунную систему) часто бывает не эффективной, поскольку иммунитет, который вырабатывается, не имеет достаточную силу.

Условия хранения и срок годности вакцины

Срок годности препарата зависит от используемого консерванта и составляет:

  • 2 года при использовании сахарозо-желатиновой среды с тиомочевиной.
  • 3 года при использовании сахарозо-желатиновой среды с глутаминово-кислым натрием.

Препарат хранят в специальном оборудовании при температуре от -20 до +6 градусов по Цельсию.

Аналоги препарата

На фармацевтическом рынке выпускается оральная вакцина для профилактики чумы. Форма выпуска: таблетки в упаковках по 40 или 90 штук. Вакцинация при помощи этой вакцины проводится пациентам старше 14 лет. Ревакцинация - через год по эпидемиологическим показаниям.

Фармакологическая группа:
МИБП-вакцина

Показания:
Профилактика чумы.

Побочные действия:
Вакцина слабореактогенна. Прививки могут сопровождаться как местной, так и общей реакциями, интенсивность которых зависит от индивидуальных особенностей привитых.

Международное название:

Вакцина чумная (Vaccine plague)

Торговое название:

Вакцина чумная живая сухая (Vaccinum pestosum vivum siccum)

Форма выпуска:

лиофилизат для приготовления раствора для подкожного, внутрикожного, накожного скарификационного и ингаляционного введения (флаконы) 2 мл

Описания:

Вакцина чумная живая сухая представляет собой взвесь живых бактерий вакцинного штамма чумного микроба ЕВ НИИЭГ, лиофилизированного в сахарозо-желатиновой среде с тиомочевиной или в сахарозо-желатиновой среде с глютаминовокислым натрием, тиомочевиной и пептоном или в лактозодекстриновой среде с тиомочевиной и аскорбиновой кислотой. Сухой препарат при осмотре невооруженным глазом должен иметь вид серовато-белой или желтоватой пористой массы и не содержать посторонних примесей. После добавления 0,9 %-ного (изотонического) раствора NaCl или 10 %-ного раствора лактозы препарат должен растворяться в течение 3 мин. с образованием гомогенной взвеси. Вакцина предназначается для предохранительных прививок против чумы.

Показания:

Показанием к проведению профилактических прививок является наличие эпизоотий чумы среди грызунов или возможность завоза инфекции больным человеком.

Режим дозирования:

Способы введения — вакцину применяют подкожно игольным или безыгольным методом, внутрикожно — безыгольным способом или накожно. Одна и та же серия вакцины может быть использована для любого способа вакцинации в зависимости от разведения. Прививки проводят врачи с соблюдением всех правил асептики. Под наблюдением врача прививки могут делать на фельдшерско-акушерском и фельдшерском пунктах фельдшера и опытные медсестры, получившие специальный инструктаж. Врач несет ответственность за правильный отбор лиц, подлежащих вакцинации. Перед вакцинацией прививаемых тщательно осматривают с измерением у них температуры. Проведение прививок при температуре 37град.С и выше запрещается. Все дети, подлежащие прививкам, должны обследоваться с учетом анамнестических данных (предшествующие заболевания, переносимость ранее проведенных прививок, наличие аллергических реакций на лекарственные препараты, пищевые продукты и др.). Дети с хроническими заболеваниями, аллергическими состояниями и др., проживающие в сельской местности, должны в обязательном порядке перед проведением прививки осматриваться врачом. О дне предстоящих прививок детям, посещающим дошкольные учреждения и школы, необходимо заранее оповещать родителей. Категорически запрещается проведение прививок на дому за исключением хозяйств отгонного животноводства на энзоотичной по чуме территории, где вакцинацию против чумы проводят специальные бригады вакцинаторов под руководством врача на оборудованной для этой цели машине или в одном из жилищ местного населения. Запрещается проведение вакцинации и прием больных в одном помещении. Недопустимо наличие гнойничковых заболеваний у медперсонала, проводящего прививки. Перед проведением массовых прививок каждая серия вакцины должна быть предварительно испытана на группе людей в 50 — 100 человек, равнозначной по возрасту и состоянию здоровья основному контингенту прививаемых. В дальнейшем вакцина может быть использована для массовой вакцинации, если количество средних и сильных реакций на введение не превышает соответственно 29 и 5 % для подкожного и внутрикожного введения, 1 % средних реакций для накожного метода. При проведении прививок следует учитывать, что подкожная и внутрикожная прививки вызывают более выраженную поствакцинальную реакцию, чем накожная, поэтому здоровые контингенты населения с 7 до 60 лет, не имеющие противопоказаний, можно прививать подкожным и внутрикожным методами, а детей с 2 до 7 лет, лиц старше 60 лет, женщин в первой половине беременности и кормящих прививать только накожно. Внутрикожным и подкожным безыгольным методами можно прививать здоровые контингенты с 18 до 60 лет, не имеющие противопоказаний.

Разведение и введение вакцины . Перед началом прививок тщательно просматривают ампулу (флакон) до и после разведения. Вакцина не подлежит употреблению при обнаружении в стекле трещин, хлопьев или осадка, неразбивающихся при встряхивании, а также при наличии посторонних примесей, с истекшим сроком годности, без этикеток и с недостающими сведениями на этикетках. Годную ампулу протирают ватой со спиртом и надпиливают ее шейку напильником, также предварительно протертым спиртом. В случае расфасовки вакцины во флаконах, после снятия металлического колпачка обрабатывают спиртом наружную часть резиновой пробки. Затем с помощью шприца, снабженного иглой, прокалывают резиновую пробку и вводят растворитель. В ампулу (флакон) вводят 1 — 2 мл растворителя (в зависимости от объема налитой вакцины). При необходимости большего разведения полученную взвесь отсасывают стерильным шприцем с длинной иглой и переносят во флаконы с необходимым объемом стерильного 0,9 %-ного (изотонического) раствора NaCl согласно указанию на этикетке. При этом учитывают объем изотонического раствора, внесенного в ампулу для растворения вакцины. При накожном методе вакцинации используют 0,9 %-ный (изотонический) раствор NaCl в ампулах, при внутрикожном и подкожном методах введения, в связи с большими объемами разведения, — во флаконах. Объединение содержимого нескольких ампул в одном флаконе разрешается только при вакцинации с помощью безыгольного инъектора. Вакцину разводят перед вакцинацией, закрывают стерильной ватой или марлевой салфеткой и используют в течение 2 ч. Остатки уничтожают кипячением. Для прививок используют шприцы, иглы и оспопрививательные перья, которые предварительно стерилизуют или сухим жаром в течение 1 ч. при 160град.С (для шприцев из термостойкого стекла), или в автоклаве (30 мин. при 1,5 атм), или кипячением не менее 45 мин. Время исчисляется с момента достижения соответствующей температуры или давления. Каждому прививаемому должен быть применен отдельно стерилизованный шприц, игла или перо. В шприц следует набирать только одну прививочную дозу. Запрещается использовать шприцы, иглы и перья, которыми проводили прививки вакциной БЦЖ.

Накожный способ . Для накожного применения вакцину разводят 0,9 %-ным (изотоническим) раствором NaCl в объеме, указанном на этикетке коробки с вакциной, и оставляют непосредственно в ампуле или флаконе. Для взрослого одна человеко-доза содержит 3 млрд. живых микробов в 0,15 мл. Кожу на месте введения вакцины дезинфицируют спиртом; сильно загрязненную кожу предварительно очищают бензином. Вакцину прививают на внутренней поверхности левого предплечья или наружной поверхности плеча. Вакцинацию производят следующим образом: оспопрививательным пером слегка соскабливают (до покраснения) поверхностный слой эпидермиса на одном, двух, трех (в зависимости от возраста прививаемых) участках кожи, которую предварительно очищают, как указывалось выше. Расстояние между участками 3 — 4 см, площадь каждого из них 1 — 1,5 см2. На каждый участок скарифицированной кожи пипеткой наносят по одной капле вакцины, после чего оспопрививательным пером через каждую каплю делают крестообразно 8 линейных насечек. Затем в течение нескольких секунд тщательно втирают ее в скарифицированную кожу. Насечки следует делать неглубокие, так как излишняя кровоточивость из них частично вымывает вакцину.

Подкожный шприцевой способ . Одна человеко-доза для подкожной прививки содержит 300 млн. Живых микробов в 0,5 мл. При проведении прививок перед каждым набором вакцины в шприц флакон следует встряхнуть. Вакцину вводить в область спины ниже угла лопатки строго под кожу или в левое плечо позади дельтовидной мышцы. Кожу перед введением вакцины обрабатывают так же, как при накожной вакцинации. После инъекции место смазывают 5 %-ной йодной настойкой.

Подкожный безыгольный способ . В случае необходимости проведения массовых прививок против чумы детям с 7 лет и взрослым до 60 лет подкожная вакцинация может быть проведена безыгольным инъектором. Стерилизацию всех частей инъектора проводят кипячением не менее 45 мин. или автоклавированием при температуре до 130 град.С в течение 30 мин. Однократная стерилизация обеспечивает стерильность инъектора в течение 24ч. При частой смене флаконов с вакциной, в случае непрерывного потока людей или при вынужденных перерывах в процессе проведения массовой вакцинации, инъектор подвергают дополнительной стерилизации 70град. спиртом. Во избежание свертывания остатков вакцины в инъекторе флакон с препаратом заменяют флаконом со стерильной дистиллированной водой и проводят промывку каналов головки инъектора 10 — 15 «выстрелами», соблюдая при этом меры предосторожности по предупреждению загрязнения окружающей среды вакцинным штаммом чумного микроба и меры предохранения вакцинаторов от вдыхания вакцинного аэрозоля ввиду опасности аллергизации. Затем таким же способом стерилизуют инъектор спиртом. Флакон с вакциной рекомендуется помещать на инъектор непосредственно перед выполнением инъекций прививаемым. Остатки спирта перед этим следует удалить дистиллированной водой, а объем вводимой вакцины отрегулировать на шкале инъектора в соответствии с возрастом лица, подлежащего вакцинации. Запробкованные флаконы для разведения вакцины стерилизуют сухим жаром в течение 1 ч. при 160 град.С и хранят не более 3 суток. Подготовка, порядок работы и проверка технического состояния инъектора осуществляется строго согласно техническому описанию и инструкции по эксплуатации. Вакцинацию безыгольным инъектором проводят согласно инструкции по его применению для подкожных инъекций препаратов в объеме 0,5 мл. Объем вводимого препарата меняется с учетом возраста прививаемого (см. ниже). Вводить вакцину только в область дельтовидной мышцы. Место инъекции обрабатывают так же, как при игольном способе вакцинации.

Внутрикожный безыгольный способ . Вакцинацию безыгольным инъектором проводят согласно инструкции по его применению для внутрикожных инъекций препаратов в объеме 0,1 мл. Однако человеко-доза содержит 300 млн. живых микробов. Вакцину вводят строго внутрикожно в левое плечо позади дельтовидной мышцы. Кожу перед введением вакцины обрабатывают так же, как и при других методах вакцинации. Внутрикожные безыгольные прививки сопровождаются почти во всех случаях незначительной болезненностью и воспалительной реакцией на месте введения. Сразу после инъекции на коже возникает папула диаметром до 10 мм в виде «лимонной корочки», которая рассасывается через 1 — 2 ч. Спустя 6 — 10 ч. появляется гиперемия и припухлость, которые достигают максимальной интенсивности (до 2,5 см в диаметре — слабая реакция, до 5 см — средняя реакция, свыше 5 см — сильная реакция) через 24 — 48 ч. и затем, постепенно уменьшаясь в размерах, исчезает через 6 — 7 дней. У отдельных лиц в центре припухлости может возникнуть плотная папула с переходом в пустулу с серовато-белым содержимым, которая затем покрывается корочкой, отпадающей на 8 — 10 сутки после вакцинации. На месте ее остается нежный рубчик, который впоследствии исчезает. За привитыми внутрикожным и подкожным методами необходимо обеспечить медицинское наблюдение в течение часа после иммунизации, так как в редчайших случаях у особо чувствительных лиц возможно возникновение шока.

Кратность и периодичность прививок . Вакцину прививают однократно. Она обеспечивает иммунитет длительностью до 1 года. При ежегодно практикующихся прививках одних и тех же контингентов населения ревакцинация проводится через 12 месяцев. Вакцинацию взрослого населения проводят не ранее чем через 1 месяц, детей — не ранее чем через 2 месяца после прививки другими вакцинами. Вакцинацию взрослых другими препаратами можно проводить не ранее чем через 1 месяц, а детей — не ранее чем через 2 месяца после прививки чумной вакциной.

Размеры первичной дозы. Для вакцинации и ревакцинации используют дозы: вакцинируемым взрослым и детям старше 14 лет доза вакцины (живых микробов) при подкожном способе введения — 300 млн. в 0,5 мл; при внутрикожном — 300 млн. в 0,1 мл; при накожном — 3 млрд. в 0,15 мл(3 капли глазной пипетки). Дети в возрасте от 10 до 14 лет — при подкожном способе введения — 1/2 дозы взрослого в 0,3 мл; при накожном — 3 млрд. в 0,15 мл (3 капли глазной пипетки). Дети в возрасте от 7 до 10 лет — при подкожном — 1/3 дозы взрослого в 0,15 мл; накожном — 2/3 дозы в 0,1 мл (2 капли). Дети от 2 до 7 лет при накожном способе введения-1/3 дозы в 0,05 мл (1 капля).

Побочные действия:

Нормальная реакция организма на введение препарата. Прививки вакциной чумной живой сухой могут сопровождаться общей и местной реакцией, интенсивность которых зависит, кроме индивидуальных особенностей привитых, от метода вакцинации. Накожные прививки сопровождаются главным образом местной реакцией, которая выражается в появлении на месте прививки отечности, гиперемии, мелкой везикулезной сыпи по ходу насечек, иногда инфильтрации. Реже наблюдаются лимфангоиты и регионарные лимфадениты. Местная реакция начинает проявляться через 8 — 10 ч. и достигает полного развития через 24 — 30 ч., в более редких случаях — через 48 ч. после вакцинации. Общая реакция в большинстве случаев бывает незначительной или отсутствует и может сопровождаться повышением температуры в течение 1 суток до 37,5 град.С, у 1 % вакцинированных температура может повышаться от 37,6 до 38,5град.С (средняя реакция). Местная реакция на подкожные и внутрикожные прививки сопровождается распространенной гиперемией, припухлостью, почти во всех случаях наблюдается болезненность. Реже припухают регионарные лимфатические узлы. Местная реакция начинает развиваться через 6 — 10 ч., достигает полного развития через 24 — 48 ч., исчезает через 4 — 5 дней. Общая реакция выражается в недомогании, головной боли, повышении температуры до 37,5град.С (слабая реакция), от 37,6 до 38,5град.С (средняя), от 38,6град.С и выше (сильная). Средние и сильные реакции могут наблюдаться в 29 и 5 % соответственно от общего числа вакцинированных. В редких случаях появляются тошнота и рвота. Общая реакция имеет место на 1 — 2 сутки и обычно исчезает через 1 — 3 суток после вакцинации. Для профилактики общих и местных реакций рекомендуется принимать ацетилсалициловую кислоту по 1,0 г трижды в первые и дважды на вторые и третьи сутки, а также димедрол по 0,05 г или тавегил по 1 таблетке (0,001) дважды в течение 3 суток.

Возможные осложнения при введении препарата и оказание необходимой помощи пациенту при осложнениях. В редких случаях введение чумной вакцины сопровождается значительными реакциями местного и общего характера. При чрезмерных местных реакциях целесообразно назначать внутрь антигистаминные препараты (димедрол 0,05 — 0,1). В случае шока или появления симптомов анафилактоидной реакции у привитых подкожным методом рекомендуется подкожное введение 1 мл адреналина (1: 1000) или 1 мл 5 %-ного эфедрина, или мезатона (1 % — 1,0). Показано также внутривенное введение 1 — 3 мл 10 %-ного раствора хлористого кальция, 20 — 25 мл раствора глюкозы (20 — 40 %), преднизалона (40 — 140 мг в 200 — 500 мл полиглюкина), 0,9 %-ного (изотонического) раствора NaCI с добавлением 0,3 — 0,5 мл адреналина (1: 1000), а также применение кислорода, кордиамина, коразола, кофеина и других симптоматических средств.

Противопоказакния:

Противопоказаниями к применению являются: острые инфекционные заболевания. После перенесения острых заболеваний прививки должны проводиться не ранее чем через 1 месяц после клинического выздоровления. Перенесшим инфекционный гепатит, менингококковую инфекцию прививки проводят не ранее 6 месяцев после выздоровления; активные формы туберкулеза и ревматизма; заболевания сердечно-сосудистой системы (декомпенсированные и субкомпенсированные пороки сердца, гипертония II и III степени, перенесенный инфаркт); язвенная болезнь желудка и двенадцатиперстной кишки; острые и хронические заболевания почек, печени и желчного пузыря; тяжелые формы тиреотоксикоза, сахарный диабет, недостаточность надпочечников и другие болезни эндокринной системы; болезни крови и лимфоидной системы (злокачественное и резко выраженное малокровие, лейкозы, геморрагические диатезы); бронхиальная астма, астматический бронхит, эксудативный диатез и другие аллергические состояния, анафилактические реакции на пищевые, лекарственные и другие аллергены; тяжелые формы рахита и гипотрофии (II и III ст.); заболевания кожи в период клинических проявлений (экзема, нейродермит, фурункулез, распространенные гнойничковые заболевания кожи); вторая половина беременности; злокачественные новообразования, красная волчанка и другие коллагенозы; резко выраженное состояние инфантилизма; болезни нервной системы; травмы с остаточными явлениями, эпилепсия с частыми припадками, гидроцефалия в стадии декомпенсации и субкомпенсации и др. заболевания ЦНС; лечение стероидами, антиметаболитами, рентгенотерапия (прививки допускаются не ранее 6 месяцев после окончания терапии при отсутствии других противопоказаний).

Срок годности:

Срок годности вакцины, высушенной в сахарозо-желатиновой среде с тиомочевиной, — 2 года с последующим переконтролем и продлением еще на год, в сахарозо-желатиновой среде с глютаминово-кислым натрием, тиомочевиной и пептоном — 3 года с момента высушивания, с переконтролем через 3 и 5 лет и продлением его каждый раз еще на 2 года; в лактозо-декстриновой среде с тиомочевиной и аскорбиновой кислотой после контроля жизнеспособности через 6 месяцев с момента изготовления устанавливают срок хранения до 5 лет с последующим переконтролем и продлением еще на 2 года.

Условия хранения:

Вакцину хранят в темном сухом месте при температуре от -20 до +6град.С. При комнатной температуре (20 — 25град.С) вакцину можно хранить до 2-х месяцев, включая срок транспортирования.


Владельцы патента RU 2510825:

Изобретение относится к области биотехнологии и касается способа получения препарата на основе вакцинного штамма чумного микроба. Представленное изобретение предусматривает изготовление посевной нативной культуры чумного микроба, концентрирование микробной суспензии, приготовление вакцинной взвеси и получение сухой формы препарата, при этом приготовление посевной культуры включает культивирование микробов в жидкой питательной среде в бутылях в течение 48 ч при температуре 26…28˚С и непрерывной аэрации не менее 10 л·мин -1 пассированной стабилизированной стартовой культурой, полученной в результате трех последовательных пассажей через организм морских свинок и смешанной в соотношении 2:1 со стабилизирующей глицерино-лактозо-полиглюкиновой жидкостью, при приготовлении вакцинной взвеси используют оптимизированную по компонентному составу защитную среду высушивания, а лиофилизацию проводят соблюдая определенный режим. Представленное решение позволяет получить продукт с повышенной активностью при сокращении продолжительности процесса его изготовления. 3 ил., 6 табл.

Изобретение относится к области биотехнологии, а именно к способам получения бактерийных препаратов на основе вакцинных штаммов чумного микроба, и может быть использовано для приготовления медицинских иммунобиологических препаратов.

В настоящее время в России единственным препаратом, используемым для специфической профилактики чумы, является вакцина чумная живая сухая, разработанная в 1937…1939 гг. на основе вакцинного штамма EV линии НИИЭГ [Файбич М.М., Карнеев Р.В., 1947 г.]. Длительное применение вакцины чумной живой сухой показало ее высокую эффективность при накожном, внутрикожном, подкожном и ингаляционном способах иммунизации.

Однако проблема сохранения высокоиммуногенных свойств вакцины во многом определяется стабильностью биологических свойств вакцинного штамма чумного микроба, входящего в ее состав, не только в процессе длительного хранения, но и на технологических стадиях производства препарата. Выпускаемые серии вакцины, как показывает практика, могут различаться между собой по физико-химическим свойствам, содержанию живых микробных клеток, термостабильности, остаточной влажности, иммуногенности и другим показателям. Поэтому поиск новых способов получения чумных вакцин, улучшающих их качественные характеристики, является актуальной задачей на современном этапе.

Известен способ получения вакцины чумной живой сухой на основе штамма EV линии НИИЭГ, применяемый в НИПЧИ г. Ставрополя [Промышленный регламент. Регистрационный номер ФГУН ГИСК им. Л.А. Тарасевича ПР №2334-09]. Способ заключается в последовательном приготовлении из производственной лиофилизированной культуры вакцинного штамма EV посевных культур I…III генерации: I генерации - выращиванием в пробирках на скошенном агаре Хоттингера, II генерации - в матрацах (бутылях) с бульоном Хоттингера или бульоном на основе ферментативного гидролизата казеина (ФГК), III генерации - культивированием в жидкой питательной среде (ЖПС) в бутылях, выращивании нативной культуры на плотной питательной среде (ППС) в АКМ-Ш (реакторе), приготовлении вакцинной взвеси и сухого препарата.

Наиболее близким к заявляемому является способ получения вакцины чумной живой сухой на основе вакцинного штамма EV, применяемого в 48 ЦНИИ Минобороны России [Промышленный регламент на производство вакцины чумной живой лиофилизата для приготовления суспензии для инъекций, ингаляций и накожного скарификационного нанесения. ПР 08461522-07-08. Утвержден 03.06.2009 г. Регистрационный номер ФГУН ГИСК им. Л.А. Тарасевича ПР №2120-09]. Способ заключается в последовательном приготовлении из производственной культуры вакцинного штамма EV посевных культур I…III генерации: I генерации - выращиванием микробов в пробирках на скошенной ППС на основе ферментативного гидролизата мяса крупного рогатого скота (ФГМ), II генерации - ЖПС на основе ФГМ во флаконах, III генерации - культивированием в ЖПС на основе ФГМ в бутылях, выращивании нативной культуры в ЖПС, в аппаратах - культиваторах (реакторах), концентрировании микробной взвеси, приготовлении вакцинной взвеси с использованием защитной среды высушивания следующего состава:

лиофилизации вакцинной взвеси по следующему технологическому режиму:

температура конденсатора - минус (50…70)°C;

температура замораживания материала - минус 30°C;

разрежение в сушильной камере - не более 300 мкм рт.ст;

скорость сушки - 2°С·ч -1 ;

время досушивания -10 ч.

Общим с заявляемым способом является аналогичность получения посевной культуры методом выращивания в ЖПС на основе ФГМ в бутылях и концентрирование микробной взвеси.

Основными недостатками способа-прототипа является следующее.

1. Получение традиционного посевного материала, включающее в себя ряд последовательных пересевов на плотных и в жидких питательных средах (посевные культуры I, II, III генераций), не гарантирующих стабильности основных биологических свойств и значительно снижающих резистентность вакцинного штамма чумного микроба к действию внешних факторов на последующих этапах приготовления концентрированной суспензии, вакцинной взвеси и сухой формы готового препарата.

2. Применение в качестве компонента защитной среды высушивания декстрина, который вследствие процессов коагуляции и дальнейшей седиментации, спровоцированной воздействием высокой температуры при автоклавировании, приводит к искусственному увеличению оптической плотности по сравнению с исходной. Это в дальнейшем способствует неадекватности оценки действительной концентрации, возрастанию оптической концентрации микробных клеток непосредственно в вакцинном препарате. Вышеуказанные обстоятельства ведут к нежелательному снижению одного из важнейших показателей качества вакцины чумной живой - процента живых микробных клеток.

3. Использование традиционного режима высушивания вакцинной взвеси с высокой гибелью микробов в условиях лиофильного стресса.

Все вышеперечисленные недостатки требовали серьезного поиска оптимальной схемы приготовления посевного материала, обеспечивающей стабилизацию основных биологических свойств микробов на ранних стадиях производства вакцины, оптимизации компонентного состава среды высушивания для полной протекции микробных клеток перед лиофилизацией и исключения возможных технических ошибок в определении концентрации микробных клеток на стадии приготовления вакцинной взвеси, отработки режимов лиофилизации, позволяющих снизить повреждающее воздействие низких температур и обезвоживания на микробные клетки в процессе сушки.

Задача изобретения заключается в сокращении продолжительности процесса получения вакцинного препарата с одновременным повышением его специфической активности.

Поставленная задача решается благодаря тому, что в заявляемом способе получения вакцины разработаны и оптимизированы (таблица 1):

1. Схема получения посевной культуры штамма чумного микроба, предусматривающая культивирование пассированной стабилизированной стартовой культуры (ПССК) в ЖПС в бутылях.

Для приготовления ПССК ампулу с эталонной культурой штамма чумного микроба ресуспендируют до первоначального объема в дистиллированной воде, а затем проводят последовательные трехкратные тестикулярные пассажи микробной культуры через организм восприимчивых животных (морских свинок). Пассированную микробную культуру стерильно выделяют из организма животных и смешивают в соотношении 2:1 со стабилизирующей жидкостью (глицерин, лактоза и полиглюкин). Приготовленную ПССК, предназначенную для получения посевной культуры в бутылях, разливают во флаконы по 60…80 мл и хранят в замороженном состоянии при температуре минус 18…22°C.

Культивирование микробов в ЖПС в бутылях проводят в течение 48 ч при температуре 26…28°C и непрерывной аэрации не менее 10 л·мин -1 . По окончании выращивания проводят биологический контроль культуры и передают ее в реактор для приготовления нативной культуры.

Сравнительная характеристика нативных культур вакцинного штамма чумного микроба, приготовленных по заявляемой схеме и схеме-прототипу, представлены в таблице 2.

2. Компонентный состав защитной среды высушивания: лактоза, г·л -1 - 300,0; тиомочевина, г·л -1 - 30,0; аскорбиновая кислота, г·л -1 - 30,0; полиглюкин, г·л -1 - 30,0; дистиллированная вода, л - до расчетного объема, водородный показатель среды в пределах 7,4…7,8 ед. pH (таблица 3).

Полиглюкин (полисахарид-структурообразователь)-отечественный декстран, полученный методом направленного синтеза. Молекулярный вес полиглюкина составляет (50…70)·10 3 ед. Являясь продуктом частичного гидролиза декстрина, он обладает идентичными свойствами, но значительно уступает в молекулярной массе. Полиглюкин химически инертен, практически не вступает в соединение с другими веществами. Безвредность, нетоксичность и апирогенность полиглюкина доказаны длительным и успешным применением его в области гемотрансфузиологии. Отсутствие побочного влияния на организм человека допускает его применение в качестве компонентов среды высушивания для вакцин.

В основе его действия на микробные клетки лежит процесс стабилизации конформационного состояния белковых молекул за счет восстановления внутримолекулярных водородных связей. Использование полиглюкина в качестве криопротектора позволяет значительно снизить деструкцию микробных клеток при замораживании и обезвоживании в процессе лиофилизации.

3. Технологический режим лиофильного высушивания по основным параметрам: температура конденсатора минус 60°C, температура замораживания материала минус 40°C, разрежение в сушильной камере (глубина вакуума) не более 100 мкм рт.ст., скорость сушки 3°C·ч -1 , время досушивания 6 ч (таблица 3, рисунки 1-3).

Сокращение продолжительности процесса получения вакцины, стабилизация биологических свойств чумного микроба на стадиях приготовления вакцинных полуфабрикатов и улучшение качественных характеристик сухой формы препарата обусловлено:

1) схемой получения посевной культуры вакцинного штамма чумного микроба, предусматривающей культивирование ПССК в ЖПС в бутылях;

2) применением оптимизированной по компонентному составу защитной среды высушивания;

3) оптимизированным по основным технологическим параметрам режимом лиофилизации.

Причинно-следственная связь между совокупностями существенных признаков заявляемого объекта и достигнутых результатов представлена в таблице 4.

Изобретение позволяет приготовить вакцину, соответствующую предъявляемым требованиям и обладающую стабильными биологическими свойствами на протяжении всего допустимого срока хранения.

Возможность осуществления заявляемого изобретения показана следующим примером.

Для приготовления посевной культуры чумного микроба хранившуюся при отрицательных температурах ПССК вносят в ЖПС на основе ФГМ в бутылях. Выращивание проводят в течение 48 ч при температуре 26…28°C и непрерывной аэрации не менее 10 л·мин -1 . По окончании выращивания культуры в бутылях проводят ее биологический контроль и передают в реакторы для приготовления нативной культуры. Выращивание микробной взвеси в реакторе проводят методом глубинного культивирования в соответствии с требованиями [Промышленный регламент. Регистрационный номер ФГУН ГИСК им. Л.А. Тарасевича ПР №2120-09].

Для приготовления среды высушивания навеску полиглюкина предварительно заливают 100…200 мл теплой 40…50°C дистиллированной воды и выдерживают 10…12 ч при температуре 18…24°C. Полученный гомогенный раствор фильтруют в стерильную посуду через марлевый фильтр.

Навеску лактозы заливают 500 мл дистиллированной воды и подогревают до 80…90°C при постоянном перемешивании до полного растворения. После этого полученный раствор разделяют на две части. В одной части растворяют аскорбиновую кислоту, а в другой - тиомочевину; растворение тиомочевины проводят при температуре 70…80°C. Раствор аскорбиновой кислоты нейтрализуют 40% раствором NaOH до величины 7,3…7,5 ед. pH. Приготовленные растворы тиомочевины и аскорбиновой кислоты фильтруют через марлевый фильтр и смешивают с раствором полиглюкина. Величина pH полученной смеси должна находиться в пределах 7,2…7,6 ед. pH. Корректировку величины pH производят 10% раствором NaOH.

Для корректировки оптической плотности при приготовлении вакцинной взвеси готовят также дополнительный раствор среды высушивания с содержанием компонентов в 10 раз меньшим, чем их содержание в основном растворе среды высушивания. Полученную среду высушивания стерилизуют в автоклаве (текучим паром - 40 мин; при 120°C - 20 мин или фильтрацией на фильтрующих установках типа "Sartorius" SM 16277 или "Сартокон-мини").

В бутыль с концентрированной взвесью чумного микроба при помощи вакуума добавляют среду высушивания из расчета 2:1 (2 части концентрированной взвеси, 1 часть среды высушивания). Содержимое бутыли тщательно перемешивают встряхиванием. После этого отбирают пробу вакцинной взвеси в количестве 200…300 мл для оценки ее биологических свойств. Вакцинную взвесь можно хранить при температуре 2…6°C не более 4 ч.

Вакцинную взвесь разливают в стерильные пенициллиновые флаконы по 2,0 мл в каждый с помощью автоматического дозатора над пламенем спиртовки.

Сублимационное высушивание проводят в установке TG-16. Для этого за 3 ч до загрузки охлаждают полки камеры до температуры минус 40°C, конденсатор до температуры минус 60°C. Кюветы с флаконами устанавливают на 1-5 полки сублиматора. В один из флаконов на полках №1, 3, 5 вставляют датчик температуры. Замораживание вакцинной взвеси проводят до температуры минус 40°C. После достижения указанной температуры вакцинной взвеси делают выдержку в течение 2 ч. Включают вакуумный насос и создают разрежение в установке не более 100 мкм рт.ст. Через 1 ч после создания заданной величины разрежения включают подогрев полок. Далее проводят постепенное повышение температуры до 0°C. Скорость сушки в этот период составляет 3°C·ч -1 . При достижении температуры в материале 0°C с помощью подогрева полок за 6 ч доводят ее до температуры 25…30°C. Скорость сушки в этот период составляет 5…6°C·ч -1 и досушивание проводят при этой температуре в течение 6 ч.

Сравнительные характеристики экспериментально-производственных серий вакцины чумной живой сухой, наработанных по заявляемому способу и способу-прототипу, а также в процессе длительного хранения представлены в таблицах 5 и 6.

Таблица 3
Сравнительная характеристика стадий технологического процесса получения чумной вакцины
Наименование стадии технологического процесса Описание стадии технологического процесса
прототип (Промышленный
регламент ПР №2120-09)
заявляемый объект
ТП - 14 Состав стабилизатора: Состав стабилизатора:
Приготовление вакцинной взвеси лактоза, г·л -1 - 300; лактоза, г·л -1 - 300;
декстрин, г·л -1 - 30; полиглюкин, г·л -1 - 30;
Операция BP-14-5 тиомочевина, г·л -1 - 30; тиомочевина, г·л -1 - 30;
Приготовление стабилизатора аскорбиновая кислота, г·л -1 - 30;
вода дистиллированная, л - до расчетного объема.
ТП-15. Розлив вакцинной взвеси и сублимационное высушивание Технологический режим сублимационного высушивания по основным параметрам: температура конденсатора - минус 60°C;
Операция ТП-15-8 Сублимационное высушивание температура замораживания материала - минус 30°C; разрежение в сушильной камере (глубина вакуума) - не более 300 мкм рт.ст; скорость сушки 2°C·ч -1 ; время досушивания 10 ч температура замораживания материала минус - 40°C; разрежение в сушильной камере (глубина вакуума) - не более 100 мкм рт.ст; скорость сушки 3°C·ч -1 ; время досушивания 6 ч.
Таблица 4
Причинно-следственная связь между совокупностями существенных признаков заявляемого объекта и достигнутых результатов
Виды технического результата и их размерность Показатели фактические и расчетные Подробное описание, за счет чего стало возможным улучшение показателей предложенного объекта по сравнению с прототипом
прототип заявляемый объект
Концентрация микробных клеток, Использование оптимизированного компонента состава защитной среды высушивания и оптимизированного технологического режима лиофильного высушивания
млрд·мл -1: общая (по ОСО мутности ГИСК) 90 75
живых (чашечным методом) 24,5 26,1
27,2 34,8
Иммуногенность ЕД 50 , ж.м.кл., для: Использование пассивированной стабилизированной стартовой культуры
белых мышей 11350 9053
морских свинок 7360 5225
Сокращение продолжительности процесса получения вакцины, ч 491 337 Использование пассивированной стабилизированной стартовой культуры и оптимизированного технологического режима лиофильного высушивания
Таблица 5
Сравнительная характеристика биологических показателей вакцины чумной живой сухой в процессе длительного хранения
(X ¯ ± I 95 , n=5)
Исследуемая серия вакцины Концентрация микробов, N·10 9 м. кл.·мл -1 , определенная… Процент живых микробных клеток Схема получения посевных культур
по ОСО мутности ГИСК им. Л.А. Тарасевича Чашечным методом
Свежеприготовленная 75,0±4,0 26,1±2,3 34,8 Заявляемая
Хранившаяся в течение… лет 1 75,0±3,0 25,7±1,9 34,2
2 75,0±2,0 25,4+2,6 33,8
3 75,0±2,0 23,3±2,0 31,1
Свежеприготовленная 90,0±2,0 24,5+1,3 27,2 Прототип
Хранившаяся в течение… лет 1 90,0±2,0 23,8+1,5 26,4
2 90,0±2,0 23,2±1,5 25,7
3 90,0±2,0 22,5±1,8 25,0
Таблица 6
Характеристика иммунобиологических свойств экспериментально-производственной серии вакцины чумной живой сухой
Показатель качества Единица измерения Требования НД (Промышленный регламент ПР №2120-09) Результаты исследований серий препарата, полученных с использованием…способа
заявляемого прототипа
Концентрация микробных клеток в 1 мл:
по ОСО мутности ГИСК млрд От 50 до 100 75 90
живых млрд - 26,1 24,5
Процент живых микробных клеток процент 25,0, не менее 34,8 27,2
Препарат должен
Специфическая безвредность - быть безвредным при подкожном введении морской свинке массой (275±25)г 15×10 9 микробных клеток (м.кл.) в 1 мл по ОСО мутности ГИСК им. Л.А. Тарасевича Препарат безвреден при подкожном введении морской свинке массой (275±25) г 15×10 9 микробных клеток (м.кл.) в 1 мл по ОСО мутности ГИСК им. Л.А. Тарасевича
Иммуногенность (ЕД 50): 40000, не более 9053 11350
для белых мышей ж.м.кл.
для морских свинок 10000, не более 5225 7360

Способ получения препарата на основе вакцинного штамма чумного микроба, предусматривающий изготовление посевной нативной культуры чумного микроба, концентрирование микробной суспензии, приготовление вакцинной взвеси и получение сухой формы препарата, отличающийся тем, что приготовление посевной культуры включает культивирование микробов в жидкой питательной среде в бутылях в течение 48 ч при температуре 26…28˚С и непрерывной аэрации не менее 10 л·мин -1 пассированной стабилизированной стартовой культурой, полученной в результате трех последовательных пассажей через организм морских свинок и смешанной в соотношении 2:1 со стабилизирующей глицерино-лактозо-полиглюкиновой жидкостью, при приготовлении вакцинной взвеси используют оптимизированную по компонентному составу защитную среду высушивания, включающую в себя: лактозу, г·л -1 - 300,0, тиомочевину, г·л -1 - 30,0, аскорбиновую кислоту, г·л -1 - 30,0; полиглюкин, г·л -1 - 30,0; дистиллированную воду, л - до расчетного объема, рН среды 7,4…7,8, а лиофилизацию проводят соблюдая следующий режим: температура конденсатора минус 60°С, температура замораживания материала минус 40°С, разрежение в сушильной камере (глубина вакуума) не более 100 мкм рт.ст., скорость сушки 3°С · ч -1 и времени досушивания 6 ч.

Похожие патенты:

Изобретение относится к биотехнологии. Способ получения спорового материала бактерий рода Clostridium предусматривает получение инокулята бактерий в полноценной синтетической питательной среде, засев инокулята и культивирования в подходящих условиях в питательной среде, включающей картофель, глюкозу, сернокислый аммоний и мел.

Изобретение относится к биотехнологии. Предложена ассоциация штаммов бактерий-нефтедеструкторов, выделенных из нефтезагрязненной почвы, Acinetobacter species В-1037, Pseudomonas species В-989, Bacillus species B-1040, депонированных в ФБУН ГНЦ ВБ «Вектор».

Изобретение относится к области биотехнологии. Штамм Bacillus subtilis subsp.subtilis BKM B-2711D обладает выраженным антагонизмом по отношению к Escherichia coli, Salmonella typhi, Staphylococcus aureus, Listeria monocytogenes, резистентностью к антибиотикам стрептомицину и тетрациклину.