>> Биологическое действие радиоактивных излучений

§ 113 БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ РАДИОАКТИВНЫХ ИЗЛУЧЕНИЙ

Излучения радиоактивных веществ оказывают очень сильное воздействие на все живые организмы. Даже сравнительно слабое излучение, которое при полном поглощении повышает температуру тела лишь на 0,001 °С, нарушает жизнедеятельность клеток.

Живая клетка - это сложный механизм не способный продолжать нормальную деятельность далее ири малых повреждениях отдельных его участков. Между тем и слабые излучения способны нанести клеткам существенные повреждения и вызвать опасные заболевания (лучевая болезнь).

Доза излучения. Воздействие излучений на живые организмы характеризуется дозой излучения. Поглощенной дозой излучения называется отношение поглощенной энергии Е ионизирующего излучения к массе m облучаемого вещества:

В СИ поглощенную дозу излучения выражают в грэях (сокращенно: Гр). 1 Гр равен поглощенной дозе излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж:

Естественный фон радиации (космические лучи, радиоактивность окружающей среды и человеческого тела) составляет за год дозу излучения около 2 10 -3 Гр на человека. Международная комиссия по радиационной защите установила для лиц, работающих с излучением, предельно допустимую за год дозу 0,05 Гр. Доза излучения 3-10 Гр, полученная за короткое время, смертельна.

Рентген. На практике широко используется внесистемная единица экспозиционной дозы излучения - рентген (сокращенно: Р). Эта единица является мерой ионизирующей способности рентгеновского и гамма-излучений. Доза излучения равна одному рентгену (1 Р), если в 1 см 3 сухого воздуха при температуре О °С и давлении 760 мм рт. ст. образуется столько ионов, что их суммарный заряд каждого знака в отдельности равен 3 10 -10 Кл. При этом получается примерно 2 10 9 пар ионов. Число образующихся ионов связано с поглощаемой веществом энергией. В практической дозиметрии можно считать 1 Р примерно эквивалентным поглощенной дозе излучения 0,01 Гр.

Характер воздействия излучения зависит не только от дозы поглощенного излучения, но и от его вида. Различие биологического воздействия видов излучения характеризуется коэффициентом качества к. За единицу принимается коэффициент качества рентгеновского и гамма-излучения.
Самое болыпое значение коэффициента качества у -частиц (к = 20), -лучи являются самыми опасными, так как вызывают самые больнше разрушения живых клеток.

Для оценки действия излучения на живые организмы вводится специальная величина - эквивалентная доза поглощенного излучения. Это произведение дозы поглощенного излучения на коэффициент качества:

Единица эквивалентной дозы - зиверт (Зв). 1 Зв - эквивалентная доза, при которой доза поглощенного гамма-излучения равна 1 Гр.

Максимальное значение эквивалентной дозы, после которого происходит поражение организма, выражающееся в нарушении деления клетки или образовании новых клеток, 0,5 Зв.

Среднее значение эквивалентной дозы поглощенного излучения за счет естественного радиационного фона (космические лучи, радиоактивные изотопы земной коры и т. д.) составляет 2 м З в в год.

Защита организмов от излучения. При работе с любым источником радиации (радиоактивные изотопы, реакторы и др.) необходимо принимать меры по радиационной защите всех людей, могущих попасть в зону действия излучения.

Самый простой метод защиты - это удаление персонала от источника излучения на достаточно большое расстояние. Даже без учета поглощения в воздухе интенсивность радиации убывает обратно пропорционально квадрату расстояния от источника. Поэтому ампулы с радиоактивными препаратами не следует брать руками. Надо пользоваться специальными щипцами с длинной ручкой.

В тех случаях, когда удаление от источника излучения на достаточно большое расстояние невозможно, для защиты от излучения используют преграды из поглощающих материалов.

Наиболее сложна защита от -лучей и нейтронов из-за их большой проникающей способности. Лучшим поглотителем -лучей является свинец. Медленные нейтроны хорошо поглощаются бором и кадмием. Быстрые нейтроны предварительно замедляются с помощью графита.
После аварии на Чернобыльской АЭС Международным агентством по атомной энергии (МАГАТЭ) по предложению нашей страны приняты рекомендации по дополнительным мерам безопасности энергетических реакторов. Установлены более строгие регламенты работ персонала АЭС.

Авария на Чернобыльской АЭС показала огромную опасность радиоактивных излучений. Все люди должны иметь представление об этой опасности и мерах защиты от нее.

1. Что такое доза излучения!
2. Чему (в рентгенах) равен естественный фон радиации!
3. Чему (в рентгенах) равна предельно допустимая за год доза излучения для лиц, работающих с радиоактивными препаратами!

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Воздействие радиации на организм может быть различным, но почти всегда оно негативно. В малых дозах радиационное излучение может стать катализатором процессов, приводящих к раку или генетическим нарушениям, а в больших дозах часто приводит к полной или частичной гибели организма вследствие разрушения клеток тканей.

Сложность в отслеживании последовательности процессов, вызванных облучением, объясняется тем, что последствия облучения, особенно при небольших дозах, могут проявиться не сразу, и зачастую для развития болезни требуются годы или даже десятилетия. Кроме того, вследствие различной проникающей способности разных видов радиоактивных излучений они оказывают неодинаковое воздействие на организм: -частицы наиболее опасны, однако для -излучения даже лист бумаги является непреодолимой преградой; -излучение способно проходить в ткани организма на глубину один - два сантиметра; - излучение характеризуется наибольшей проникающей способностью: его может задержать лишь толстая плита из материалов, имеющих высокий коэффициент поглощения, например, из бетона или свинца.

Также различается чувствительность отдельных органов к радиоактивному излучению. Поэтому, чтобы получить наиболее достоверную информацию о степени риска, необходимо учитывать соответствующие коэффициенты чувствительности тканей при расчете эквивалентной дозы облучения:

  • 0,03 - костная ткань
  • 0,03 - щитовидная железа
  • 0,12 - красный костный мозг
  • 0,12 - легкие
  • 0,15 - молочная железа
  • 0,25 - яичники или семенники
  • 0,30 - другие ткани
  • 1,00 - организм в целом.

Вероятность повреждения тканей зависит от суммарной дозы и от величины дозировки, так как благодаря репарационным способностям большинство органов имеют возможность восстановиться после серии мелких доз.

В таблице 1 приведены крайние значения допустимых доз радиации:

Таблица 1.

Тем не менее, существуют дозы, при которых летальный исход практически неизбежен. Так, например, дозы порядка 100 г приводят к смерти через несколько дней или даже часов вследствие повреждения центральной нервной системы, от кровоизлияния в результате дозы облучения в 10-50 г смерть наступает через одну - две недели, а доза в 3-5 грамм грозит обернуться летальным исходом примерно половине облученных.

Знания конкретной реакции организма на те или иные дозы необходимы для оценки последствий действия больших доз облучения при авариях ядерных установок и устройств или опасности облучения при длительном нахождении в районах повышенного радиационного излучения, как от естественных источников, так и в случае радиоактивного загрязнения. Однако даже малые дозы радиации не безвредны и их влияние на организм и здоровье будущих поколений до конца не изучено. Однако можно предположить, что радиация может вызвать, прежде всего, генные и хромосомные мутации, что в последствии может привести к проявлению рецессивных мутаций.

Следует более подробно рассмотреть наиболее распространенные и серьезные повреждения, вызванные облучением, а именно рак и генетические нарушения.

В случае рака трудно оценить вероятность заболевания как следствия облучения. Любая, даже самая малая доза, может привести к необратимым последствиям, но это не предопределено. Тем не менее, установлено, что вероятность заболевания возрастает прямо пропорционально дозе облучения.

Среди наиболее распространенных раковых заболеваний, вызванных облучением, выделяются лейкозы. Оценка вероятности летального исхода при лейкозе более надежна, чем аналогичные оценки для других видов раковых заболеваний (приложение 4). Это можно объяснить тем, что лейкозы первыми проявляют себя, вызывая смерть в среднем через 10 лет после момента облучения. За лейкозами “по популярности” следуют: рак молочной железы, рак щитовидной железы и рак легких. Менее чувствительны желудок, печень, кишечник и другие органы и ткани.

Воздействие радиологического излучения резко усиливается другими неблагоприятными экологическими факторами (явление синергизма). Так, смертность от радиации у курильщиков заметно выше.

Что касается генетических последствий радиации, то они проявляются в виде хромосомных аберраций (в том числе изменения числа или структуры хромосом) и генных мутаций. Генные мутации проявляются сразу в первом поколении (доминантные мутации) или только при условии, если у обоих родителей мутантным является один и тот же ген (рецессивные мутации), что является маловероятным.

Изучение генетических последствий облучения еще более затруднено, чем в случае рака. Неизвестно, каковы генетические повреждения при облучении, проявляться они могут на протяжении многих поколений, невозможно отличить их от тех, что вызваны другими причинами.

Приходится оценивать появление наследственных дефектов у человека по результатам экспериментов на животных.

При оценке риска НКДАР использует два подхода: при одном определяют непосредственный эффект данной дозы, при другом - дозу, при которой удваивается частота появления потомков с той или иной аномалией по сравнению с нормальными радиационными условиями.

Так, при первом подходе установлено, что доза в 1 г, полученная при низком радиационном фоне особями мужского пола (для женщин оценки менее определенны), вызывает появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных аберраций на каждый миллион живых новорожденных.

При втором подходе получены следующие результаты: хроническое облучение при мощности дозы в 1 г на одно поколение приведет к появлению около 2000 серьезных генетических заболеваний на каждый миллион живых новорожденных среди детей тех, кто подвергся такому облучению.

Оценки эти ненадежны, но необходимы. Генетические последствия облучения выражаются такими количественными параметрами, как сокращение продолжительности жизни и периода нетрудоспособности, хотя при этом признается, что эти оценки не более чем первая грубая прикидка. Так, хроническое облучение населения с мощностью дозы в 1 г на поколение сокращает период трудоспособности на 50000 лет, а продолжительность жизни - также на 50000 лет на каждый миллион живых новорожденных среди детей первого облученного поколения; при постоянном облучении многих поколений выходят на следующие оценки: соответственно 340000 лет и 286000 лет.

Существует три пути поступления радиоактивных веществ в организм: при вдыхание воздуха, загрязненного радиоактивными веществами, через зараженную пищу или воду, через кожу, а также при заражении открытых ран. Наиболее опасен первый путь, поскольку:

объем легочной вентиляции очень большой

значения коэффициента усвоения в легких более высоки.

Пылевые частицы, на которых сорбированы радиоактивные изотопы, при вдыхании воздуха через верхние дыхательные пути частично оседают в полости рта и носоглотке. Отсюда пыль поступает в пищеварительный тракт. Остальные частицы поступают в легкие. Степень задержки аэрозолей в легких зависит от дисперсионности. В легких задерживается около 20% всех частиц; при уменьшении размеров аэрозолей величина задержки увеличивается до 70%.

При всасывании радиоактивных веществ из желудочно-кишечного тракта имеет значение коэффициент резорбции, характеризующий долю вещества, попадающего из желудочно-кишечного тракта в кровь. В зависимости от природы изотопа коэффициент изменяется в широких пределах: от сотых долей процента (для циркония, ниобия), до нескольких десятков процентов (водород, щелочноземельные элементы). Резорбция через неповрежденную кожу в 200-300 раз меньше, чем через желудочно-кишечный тракт, и, как правило, не играет существенной роли.

При попадании радиоактивных веществ в организм любым путем они уже через несколько минут обнаруживаются в крови. Если поступление радиоактивных веществ было однократным, то концентрация их в крови вначале возрастает до максимума, а затем в течение 15-20 суток снижается.

Концентрации в крови долгоживущих изотопов в дальнейшем могут удерживаться практически на одном уровне в течение длительного времени вследствие обратного вымывания отложившихся веществ.

Заряженные частицы, проникающие в ткани организма - и -частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят (Гамма-излучение и рентгеновские лучи передают свою энергию веществу несколькими способами, которые, в конечном счете, также приводят к электрическим взаимодействиям.)

Электрические взаимодействия. За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходного нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы.

Физико-химические изменения. И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционно-способные, как “свободные радикалы”. Химические изменения. В течение следующих миллионных долей секунды образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки. Биологические эффекты. Биохимические изменения могут произойти как через несколько секунд, так и через десятилетия после облучения и явиться причиной немедленной гибели клеток, или такие изменения в них могут привести к раку.

Невероятного масштаба трагедия в Хиросиме и Нагасаки, затем ужасающая авария в украинском Чернобыле. Эти события наглядно продемонстрировали всему миру, насколько страшно и опасно воздействие радиации на человека. Последствия повергли в шок население всего земного шара. К сегодняшнему дню кроме естественного радиационного излучения Земли на нас действует слабое излучение и опасность с ним связанная от многих окружающих нас предметов: бытовой техники, линий электропередач, рентгенологического оборудования, мобильных телефонов и других гаджетов.

Радиационный фон присутствует на Земле с момента развития жизни. Для контроля его величины используются единицы – микро Рентген, Рентген, Зиверт и прочие. Его действие на организмы ученые начали изучать только 20-м веке. Особая опасность ионизационного излучения заключается в том, что оно опасно всем органам и каждой клетке организма.

Люди, чья работа связана с изучением или попавшие под его воздействие по другим причинам, часто умирают от переоблучения, развития злокачественных опухолей, радиационных ожогов. Радиацию нельзя увидеть, можно лишь ощутить ее действие на себе спустя некоторое время, отмечая характерные признаки.

Действие на живые организмы радиации

Допустимой для человека разовой дозой облучения является показатель до 0,05 Зиверт. Негативного действия на человека и опасности для здоровья в таком случае не возникает. Если получено облучение в пределах от 0,05 до 0,2 Зв, то у человека в несколько раз повышается риск развития онкологических заболеваний.

Смертельной дозой уже считается от 1 до 2 Зв, но в зависимости от условий облучения человека организм может прожить от нескольких месяцев до года. Мгновенная смерть наступает при полученных 10 Зв радиации.

Изучение ионизационного излучения позволило выявить следующие его особенности:

Облучение, получаемое в малых дозах, постепенно накапливается в организме;
после излучения у человека не сразу могут проявиться симптомы радиационного поражения, потому что проходит «инкубационный период». Чем больше полученная доза радиации, тем меньше этот период;
на живые организмы действие радиации опасно и тем, что оно проявляется на будущем потомстве;
необратимые изменения в составе крови возникают уже при дозе 0,002-0,005 Гр в сутки.

Последствия радиационного облучения в организме человека

Каждый орган и ткани человеческого организма по-разному восприимчивы к полученным дозам. Самыми уязвимыми являются легкие, костный мозг, половые железы, потому что именно здесь происходит максимально быстрое деление клеток. Далее следуют желудок, печень, пищевод, щитовидка и кожные покровы. Биологическое воздействие проявляется двумя группами изменений:

Соматические (телесные) – возникают непосредственно у человека, получившего дозу;

Генетические – проявляются у потомства человека, пораженного радиацией.
Самое первой после радиационного воздействия страдает иммунная система.

Человеческий организм становится ослабленным, беззащитным перед атакой вирусов и инфекций. В щитовидной железе скапливается почти 30% от общего числа продуктов распада радионуклидов.

Облучение приводит к лучевой болезни, в результате которой необратимо нарушается естественный, правильный процесс деления клеток. Это приводит к чрезмерному разрастанию и увеличению тканей и органов, образованию злокачественных опухолей. От полученной дозы у человека выпадают волосы на голове и на теле, а сам пострадавший чувствует слабость, тошноту, общее ухудшение самочувствия.

Страшные последствия для живых от радиации после взрыва ядерной бомбы

Выше уже было сказано, что получение больших доз радиации действует на клетки разрушающе и приводит к последствиям, поистине ужасающим. Об этом свидетельствует количество жертв после сброшенных атомных бомб на Хиросиму и Нагасаки.

80 тысяч жителей, которым суждено было оказаться в Хиросиме в эпицентре взрыва атомной бомбы, просто испарились за доли секунды от высокой температуры. Обуглившиеся за секунды тела покрыли территорию практически всего города, а стрелки часов повсеместно замерли на цифрах 8.15. Через пять лет было заявлено уже о 160 тысячах умерших, а на сегодняшний день общее количество погибших в Хиросиме исчисляется 200 тысячами человек. В Нагасаки на момент взрыва погибшими оказались 65 тысяч человек, а спустя пять лет эта цифра увеличилась до 140 тысяч с учетом всех, кто пострадал от облучения.

Нестерпимо яркую вспышку сопроводила мощная взрывная волна, удушающая и убивающая на своем пути абсолютно все. Тем, кому удалось выжить в этих адских условиях, столкнулись с первыми признаками лучевой болезни уже через несколько часов. Ее симптомы и особенности в то время были изучены слабо, поэтому огромному количеству людей медицина так и не смогла помочь.

Последствия взрыва на Чернобыльской АЭС

В момент катастрофы погибли 2 сотрудника, в течение нескольких месяцев умерли от облучения еще 32 человека. Еще на протяжении 15 лет скончались около сотни человек, получивших дозу радиации. Почти 62 тысячи ликвидаторов с высоким уровнем облучения приобрели онкологические заболевания.

На тот момент далеко не все спасатели имели приборы, чтобы измерять уровень радиации. Люди не сразу были эвакуированы из опасного региона. Об угрозе опаснейшего заражения никто не сообщил своевременно, побоявшись панических настроений в обществе. До сегодняшнего дня не стихают разговоры о том, что количество жертв в Чернобыле после взрыва атомного реактора можно было бы существенно снизить.

« Биологическое действие радиации на человека»

Прошло более двадцати столетий, и перед человечеством вновь встала подобная дилемма: атом и радиация, которую он испускает, могут стать для нас источником благоденствия или гибели, угрозой или надеждой, лучшей или худшей вещью.

Цели работы:

1) Выявить воздействия радиации на биологическую среду.

2) Выявить воздействия радиации на человека.

3) Определить меры защиты от радиационного фона.

Задачи:

1) Изучить литературные источники.

2) С помощью полученной информации определить плюсы и минусы радиации.

3) Посетить КГТУ для изучения прибора, определяющего радиационный фон.

4) Определить, как радиационный фон влияет на окружающую среду и человека.

5) Выяснить меры защиты от радиационного облучения.

В нашем мире существует множество мест и предметов, от которых мы получаем облучение. Например, от телефона. Наш мобильный излучает электромагнитные волны, которые подвергают наш организм облучению. Так же мы облучаемся при воздействии с не заземленным компьютером. Когда мы делаем флюрографию, мы тоже подвергаемся к малому излучению. Есть еще множество вещей и факторов, благодаря которым мы подвергаемся излучению.

Источники радиации:

Естественные: Космические, солнечные лучи; газ радон, радиоактивные изотопы в горных породах (уран 238,торий 232,калий 40, рубидий 87); внутреннее облучение человека за счёт радионуклидов (с водой и пищей). Созданные человеком: Медицинские процедуры и методы лечения, атомная энергетика , ядерные взрывы, мусорные свалки, строительные материалы, сжигаемое топливо, бытовая техника .

Использование радиации:

Радиация используется в медицине в диагностических целях и для лечения. Одним из самых распространенных медицинских приборов является рентгеновский аппарат. Исследования в области - радиационной генетики и радиационной селекции дали около сотни новых разновидностей высокоурожайных культурных растений, устойчивых к различным заболеваниям.

Последствия воздействия радиации :

Лучевая болезнь, бесплодие , генетические мутации, поражения органов зрения, поражения нервной системы, ускоренное старение организма, нарушение психического и умственного развития, раковые заболевания.

Меры безопасности:

·не выходим из помещений, 2-3 раза в день делаем влажную (именно влажную!) уборку;

·как можно чаще принимаем душ (особенно после выхода на улицу), стираем вещи. Регулярное промывание физраствором слизистых носа, глаз и глотки не столь важно, поскольку при дыхании поступает значительно большее количество радионуклидов;

·чтобы оградить организм от радиоактивного йода-131, достаточно смазать небольшой участок кожи медицинским йодом. По мнению врачей, эта нехитрый способ защиты действует месяц;

·если Вам приходится выходить на улицу, лучше надевать светлую одежду, желательно хлопчатобумажную и влажную. На голову рекомендуют надевать капюшон и бейсболку одновременно;

·в первые несколько дней нужно опасаться радиоактивных осадков, то есть «затаиться и отсидеться».

Наши исследования в калининградском центре атома.

Для нашего опыта мы взвесили людей разной весовой категории. И наш опыт показал, что чем больше вес человека, тем выше его нормальный радиационный фон.

Радиационный фон

Дози́метр - прибор для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени. Само измерение

называется дозиметрией. В нашем случае дозиметр представляет собой напольные весы с компьютером. В результате проведенных исследований мы выявили плюсы и минусы радиации:

Плюсы:

использование в медицине (рентгенодиагностика, лучевая терапия и т. п.);

радиационная генетика и селекция;

радиоактивный громоотвод;

стерилизация и сохранение пищевых продуктов;

восстановление фотографий;

использование ионизирующих излучений в промышленности.

Минусы:

облучение; радиоактивный мусор; опасность «мирной» радиации;

генетические последствия облучения.

Вывод: В результате проведенных исследований мы выяснили, что чем больше вес человека, тем выше его нормальный радиационный фон и что он не зависит от возраста человека.

Происходит испускание различных видов излучений, частиц, которые отрицательно влияют на здоровье человека. В первую очередь, это излучение альфа, бета и гамма .

α-лучи – это поток положительно заряженных ядер атомов гелия, β-лучи – это поток отрицательно заряженных электронов, γ-лучи – это высокочастотное электромагнитное излучение. Главная опасность перечисленных видов излучений – их ионизационная способность.

Ионизирующее действие радиации на живой организм

Результатом ионизации атомов и молекул является нарушение нормального функционирования живых клеток организма, что и лежит в основе болезней, называемых лучевыми. Основная величина, характеризующая величину ионизирующего действия излучения на живой организм – это поглощенная доза излучения D:

где E – энергия излучения,
m – масса тела.

То есть доза облучения зависит от того, какой энергией обладает ионизирующее излучение, а также от массы тела. Поглощенная доза излучения выражается в греях (1 Гр). 1 Гр = 100 Р (рентгенам). 1 Р – величина, которая при t = 0˚C и давлении 760 мм рт.ст. в единицу объема сухого воздуха создает количество ионизирующих излучений 3*10-10 Кл.

Если излучение продолжается достаточно долго, то доза облучения накапливается. Имеет большое значение время облучения или экспозиции, которое показывает, сколько времени человек находился под воздействием ионизирующих излучений. Для характеристики времени облучения следует учитывать период полураспада T – промежуток времени, в течение которого исходное число радиоактивных ядер уменьшается вдвое. Для различных элементов это время разное.

Биологическое действие радиации

Ущерб от радиоактивного облучения зависит от силы излучения и от массы тела, но еще имеет значение и какие органы подверглись облучению. На разные части организма радиация будет оказывать различное действие. В связи с этим вводится еще одна величина, характеризующая биологическое действие радиации. Это эквивалентная доза H:

где D – поглощенная доза,
K – коэффициент качества.

Единицей измерения эквивалентной дозы является зиверт (1 Зв). Коэффициент качества K показывает, во сколько раз радиационная опасность от воздействия на органы данного вида облучения больше, чем от воздействия γ-излучения. Для каждого органа K имеет свое значение.

Защита от радиоактивного воздействия

Как следует защищаться от радиоактивного воздействия? В первую очередь необходимо защищать органы дыхания, чтобы с воздухом продукты радиоактивного распада не попадали внутрь человека. Именно так они наносят наибольший вред. Не менее важной является защита кожи.

Дело в том, что α и β-частицы в первую очередь поражают именно кожу. Для защиты от таких излучений нужен специальный костюм. А от γ-лучей до конца защититься костюмом не получится. Так как γ-лучи – это высокочастотное излучение, и специальными костюмами его можно только ослабить. Поэтому все противорадиационные бункеры и спецсооружения строятся именно для защиты от гамма-излучения. Лучшая защита от всех видов ионизирующих излучений – это бетон и свинец.