Большая часть кислорода в организме млекопитающих переносится кровью в виде химического соединения с гемоглобином. Свободно растворенного кислорода в крови всего 0.3%. Реакцию оксигенации, превращение дезоксигемоглобина в оксигемоглобин, протекающую в эритроцитах капилляров легких можно записать следующим образом:

Нв + 4О 2 ⇄ Нв(О 2) 4

Эта реакция протекает очень быстро – время полунасыщения гемоглобина кислородом около 3 миллисекунд. Гемоглобин обладает двумя удивительными свойствами, которые позволяют ему быть идеальным переносчиком кислорода. Первое – это способность присоединять кислород, а второе – отдавать его. Оказывается способность гемоглобина присоединять и отдавать кислород зависит от напряжения кислорода в крови. Попробуем изобразить графически зависимость количества оксигенированного гемоглобина от напряжения кислорода в крови, и тогда нам удастся выяснить: в каких случаях гемоглобин присоединяет кислород, а в каких отдает. Гемоглобин и оксигемоглобин неодинаково поглощают световые лучи, поэтому их концентрацию можно определить спектрометрическими методами.

График, отражающий способность гемоглобина присоединять и отдавать кислород называется «Кривая диссоциации оксигемоглобина». По оси абсцисс на этом графике отложено количество оксигемоглобина в процентах ко всему гемоглобину крови, по оси ординат – напряжение кислорода в крови в мм рт. ст.

Рисунок 9А. Кривая диссоциации оксигемоглобина в норме

Рассмотрим график в соответствии с этапами транспорта кислорода: самая высокая точка соответствует тому напряжению кислорода, которое наблюдается в крови легочных капилляров – 100 мм рт.ст. (столько же, сколько и в альвеолярном воздухе). Из графика видно, что при таком напряжении весь гемоглобин переходит в форму оксигемоглобина – насыщается кислородом полностью. Попробуем рассчитать, сколько кислорода связывает гемоглобин. Один моль гемоглобина может связать 4 моля О 2 , а 1грамм Нв связывает 1,39 мл О 2 в идеале, а на практике 1,34 мл . При концентрации гемоглобина в крови, например, 140 г/литр количество связанного кислорода составит 140 × 1,34 = 189,6 мл/литр крови. Количество кислорода, которое может связать гемоглобин при условии его полного насыщения, называется кислородной емкостью крови (КЕК). В нашем случае КЕК = 189,6 мл.

Обратим внимание на важную особенность гемоглобина – при снижении напряжения кислорода в крови до 60 мм рт.ст, насыщение практически не изменяется – почти весь гемоглобин присутствует в виде оксигемоглобина. Эта особенность позволяет связывать максимально возможное количество кислорода при снижении его содержания в окружающей среде (например, на высоте до 3000 метров).


Кривая диссоциации имеет s – образный характер, что связано с особенностями взаимодействия кислорода с гемоглобином. Молекула гемоглобина связывает поэтапно 4 молекулы кислорода. Связывание первой молекулы резко увеличивает связывающую способность, так же действуют и вторая, и третья молекулы. Этот эффект называется кооперативное действие кислорода

Артериальная кровь поступает в большой круг кровообращения и доставляется к тканям. Напряжение кислорода в тканях, как видно из таблицы 2, колеблется от 0 до 20 мм рт. ст., незначительное количество физически растворенного кислорода диффундирует в ткани, его напряжение в крови снижается. Снижение напряжения кислорода сопровождается диссоциацией оксигемоглобина и освобождением кислорода. Освободившийся из соединения кислород переходит в физически растворенную форму и может диффундировать в ткани по градиенту напряжения.. На венозном конце капилляра напряжение кислорода равно 40 мм.рт.ст, что соответствует примерно 73% насыщения гемоглобина. Крутая часть кривой диссоциации соответствует напряжению кислорода обычному для тканей организма – 35 мм рт.ст и ниже.

Таким образом, кривая диссоциации гемоглобина отражает способность гемоглобина присоединять кислород, если напряжение кислорода в крови высоко, и отдавать его при снижении напряжения кислорода.

Переход кислорода в ткани осуществляется путем диффузии, и описывается законом Фика, следовательно зависит от градиента напряжений кислорода.

Можно узнать, сколько кислорода извлекается тканью. Для этого нужно определить количество кислорода в артериальной крови и в венозной крови, оттекающей от определенной области. В артериальной крови, как нам удалось вычислить (КЕК) содержится 180-200 мл. кислорода. Венозная кровь в состоянии покоя содержит около 120 мл. кислорода. Попробуем рассчитать коэффициент утилизации кислорода: 180 мл. - 120 мл. = 60 мл.- это количество извлеченного тканями кислорода, 60мл./180 ´ 100 = 33%. Следовательно, коэффициент утилизации кислорода равен 33% (в норме от 25 до 40%). Как видно из этих данных, не весь кислород утилизируется тканями. В норме в течение одной минуты к тканям доставляется около 1000 мл. кислорода. Если учесть коэффициент утилизации, становится ясно, что ткани извлекают от 250 до 400 мл. кислорода в минуту, остальной кислород возвращается к сердцу в составе венозной крови. При тяжелой мышечной работе коэффициент утилизации повышается до 50 – 60 %.

Однако количество кислорода, которое получают ткани, зависит не только от коэффициента утилизации. При изменении условий во внутренней среде и тех тканях, где осуществляется диффузия кислорода, свойства гемоглобина могут измениться. Изменение свойств гемоглобина отражается на графике и называется «сдвиг кривой». Отметим важную точку на кривой – точка полунасыщения гемоглобина кислородом наблюдается при напряжении кислорода 27 мм рт. ст., при таком напряжении 50 % гемоглобина находится в форме оксигемоглобина, 50% в виде дезоксигемоглобина, следовательно 50 % связанного кислорода – свободно (примерно 100мл/л). Если в ткани увеличивается концентрация углекислого газа, ионов водорода, температура, то кривая сдвигается вправо . В этом случае точка полунасыщения переместится к более высоким значениям напряжения кислорода - уже при напряжении 40 мм рт. ст. будет освобождено 50 % кислорода (рисунок 9Б). Интенсивно работающей ткани гемоглобин отдаст кислород легче. Изменение свойств гемоглобина обусловлены следующими причинами: закисление среды в результате увеличения концентрации углекислого газа действует двумя путями 1) увеличение концентрации ионов водорода способствует отдаче кислорода оксигемоглобином потому, что ионы водорода легче связываются с дезоксигемоглобином, 2) прямое связывание углекислого газа с белковой частью молекулы гемоглобина уменьшает ее сродство к кислороду; увеличение концентрации 2,3-дифосфоглицерата , который появляется в процессе анаэробного гликолиза и тоже встраивается в белковую часть молекулы гемоглобина и снижает его сродство к кислороду.

Сдвиг кривой влево наблюдается, например, у плода, когда в крови определяется большое количество фетального гемоглобина.

Рисунок 9 Б. Влияние изменения параметров внутренней среды

Перенос веществ через клеточную мембрану

Пассивный транспорт обеспечивают также белки-каналы. Каналообразующие белки образуют в мембране водные поры, через которые (когда они открыты) могут проходить вещества. особые семейства каналообразующих белков (коннексины и паннексины) формируют щелевые контакты , через которые низкомолекулярные вещества могут транспортироваться из одной клетки в другую (через паннексины и в клетки из внешней среды).

Также для транспортировки веществ внутри клеток используются микротрубочки - структуры, состоящие из белков тубулинов . По их поверхности могут передвигаться митохондрии и мембранные пузырьки с грузом (везикулы). Этот транспорт осуществляют моторные белки. Они делятся на два типа: цитоплазматические динеины и кинезины. Эти две группы белков различаются тем, от какого конца микротрубочки они перемещают груз: динеины от + -конца к - -концу, а кинезины в обратном направлении.

Перенос веществ по организму

Транспорт веществ по организму в основном осуществляется кровью . Кровь переносит гормоны , пептиды , ионы от эндокринных желез к другим органам, переносит конечные продукты метаболизма к органам выделения, переносит питательные вещества и ферменты , кислород и углекислый газ.

Наиболее известный транспортный белок, осуществляющий транспорт веществ по организму - это гемоглобин . Он переносит кислород и диоксид углерода по кровеносной системе от лёгких к органам и тканям. У человека около 15 % углекислого газа транспортируется к лёгким с помощью гемоглобина. В скелетных и сердечной мышцах перенос кислорода выполняется белком, который называется миоглобин .

В плазме крови всегда находятся транспортные белки - сывороточные альбумины . Жирные кислоты , например, транспортируются альбуминами сыворотки крови. Кроме того, белки группы альбуминов, например, транстиретин, транспортируют гормоны щитовидной железы. Также важнейшей транспортной функцией альбуминов является перенос билирубина, желчных кислот, стероидных гормонов, лекарств (аспирин , пенициллины) и неорганических ионов.

Другие белки крови - глобулины переносят различные гормоны, липиды и витамины . Транспорт ионов меди в организме осуществляет глобулин - церулоплазмин , транспорт ионов железа - белок трансферрин , транспорт витамина B12 - транскобаламин.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Транспортная функция белков" в других словарях:

    У этого термина существуют и другие значения, см. Белки (значения). Белки (протеины, полипептиды) высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа аминокислот. В живых организмах… … Википедия

    Транспортные белки собирательное название большой группы белков, выполняющих функцию переноса различных лигандов как через клеточную мембрану или внутри клетки (у одноклеточных организмов), так и между различными клетками многоклеточного… … Википедия

    Кристаллы различных белков, выращенные на космической станции «Мир» и во время полётов шаттлов НАСА. Высокоочищенные белки при низкой температуре образуют кристаллы, которые используют для получения модели данного белка. Белки (протеины,… … Википедия

    Жидкость, циркулирующая в кровеносной системе и переносящая газы и другие растворенные вещества, необходимые для метаболизма либо образующиеся в результате обменных процессов. Кровь состоит из плазмы (прозрачной жидкости бледно желтого цвета) и… … Энциклопедия Кольера

    Высокомолекулярные природные соединения, являющиеся структурной, основой всех живых организмов и играющие определяющую роль в процессах жизнедеятельности. К Б. относятся белки, нуклеиновые кислоты и полисахариды; известны также смешанные… … Большая советская энциклопедия

    МКБ 10 R77.2, Z36.1 МКБ 9 V28.1V28.1 Альфа фетопротеин (АФП) это гликопротеин с молекулярным весом 69 000 Да, состоящий из одной полипептидной цепи, включающей 600 аминокислот и содержащей около 4% углеводов . Образуется при развит … Википедия

    Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… … Словарь-справочник терминов нормативно-технической документации

    - (лат. membrana кожица, оболочка, перепонка), структуры, ограничивающие клетки (клеточные, или плазматические, мембраны) и внутриклеточные органоиды (мембраны митохондрий, хлоропластов, лизосом, эндоплазматич. ретикулума и др.). Содержат в своём… … Биологический энциклопедический словарь

    Термин Биология был предложен выдающимся французким естествоиспытателем и эволюционистом Жаном Батистом Ламарком в 1802 году для обозначения науки о жизни как особым явлении природы. Сегодня биология представляет собой комплекс наук, изучающих… … Википедия

Кислород в крови находится в растворенном виде и в соединении с гемоглобином. В плазме растворено очень небольшое количество кислорода, каждые 100 мл плазмы крови при напряжении кислорода (100 мм рт. ст.) могут переносить в растворенном состоянии лишь 0.3 мл кислорода. Это явно недостаточно для жизнедеятельности организма. При таком содержании кислорода в крови и условии его полного потребления тканями минутный объем крови в покое должен был бы составлять более 150 л/мин. Важен другой механизм переноса кислорода путем его соединения с гемоглобином.

Каждый грамм гемоглобина способен связать 1.34 мл кислорода. Максимальное количество кислорода, которое может быть связано 100 мл крови, - кислородная емкость крови (18,76 мл или 19 об%). Кислородная емкость гемоглобина - величина, отражающая количество кислорода, которое может связаться с гемоглобином при его полном насыщении. Другой показатель дыхательной функции крови - содержание кислорода в крови, который отражает истинное количество кислорода, как связанного с гемоглобином, так и физически растворенного в плазме.

В 100 мл артериальной крови в норме содержится 19-20 мл кислорода, в таком же объеме венозной крови - 13-15 мл кислорода, при этом артерио-венозная разница составляет 5-6 мл.

Показатель степени насыщения гемоглобина кислородом – отношение количества кислорода, связанного с гемоглобином, к кислородной емкости последнего. Насыщение гемоглобина артериальной крови кислородом у здоровых лиц составляет 96%.

Образование оксигемоглобина в легких и его восстановление в тканях находится в зависимости от парциального напряжения кислорода крови: при его повышении насыщение гемоглобина кислородом возрастает, при понижении - уменьшается. Эта связь носит нелинейный характер и выражается кривой диссоциации оксигемоглобина, имеющей S-образную форму.

Оксигенированной артериальной крови соответствует плато кривой диссоциации, а десатурированной крови в тканях - круто снижающаяся ее часть. Пологий подъем кривой в верхнем ее участке (зона высокого напряжения О 2) свидетельствует, что достаточно полное насыщение гемоглобина артериальной крови кислородом обеспечивается даже при уменьшении напряжения 0 2 до 70 мм рт.ст.



Понижение напряжения О 2 со 100 на 15-20 мм рт. ст. практически не отражается на насыщении гемоглобина кислородом (НЬО; снижается при этом на 2-3%). При более низких значениях напряжения О 2 оксигемоглобин диссоциирует значительно легче (зона крутого падения кривой). Так, при снижении напряжения 0 2 с 60 до 40 мм рт. ст. насыщение гемоглобина кислородом уменьшается приблизительно на 15%.

Положение кривой диссоциации оксигемоглобина количественно принято выражать парциальным напряжением кислорода, при котором насыщение гемоглобина составляет 50%. Нормальная величина Р50 при температуре 37°С и рН 7.40 - около 26.5 мм рт. ст..

Кривая диссоциации оксигемоглобина при определенных условиях может смещаться в ту или иную сторону, сохраняя S-образную форму, под влиянием изменения:

3. температуры тела,

В работающих мышцах в результате интенсивного метаболизма повышается образование СО 2 и молочной кислоты, а также возрастает теплопродукция. Все эти факторы понижают сродство гемоглобина к кислороду. Кривая диссоциации при этом сдвигается вправо, что приводит к более легкому освобождению кислорода из оксигемоглобина, и возможность потребления тканями кислорода увеличивается.

При уменьшении температуры, 2,3-ДФГ, снижении напряжения СО 2 и увеличении рН кривая диссоциации сдвигается влево, сродство гемоглобина к кислороду возрастает, в результате чего доставка кислорода к тканям уменьшается.

6. Транспорт углекислого газа кровью . Углекислый газ переносится к легким в форме бикарбонатов и в состоянии химической связи с гемоглобином (карбогемоглобин).

Углекислый газ является продуктом метаболизма клеток тканей и поэтому переносится кровью от тканей к легким. Углекислый газ выполняет жизненно важную роль в поддержании во внутренних средах организма уровня рН механизмами кислотно-основного равновесия. Поэтому транспорт углекислого газа кровью тесно взаимосвязан с этими механизмами.

В плазме крови небольшое количество углекислого газа находится в растворенном состоянии; при РС0 2 = 40 мм рт. ст. переносится 2,5 мл/100 мл крови углекислого газа, или 5 %. Количество растворенного в плазме углекислого газа в линейной зависимости возрастает от уровня РС0 2 . В плазме крови углекислый газ реагирует с водой с образованием Н + и HCO 3 . Увеличение напряжения углекислого газа в плазме крови вызывает уменьшение величины ее рН. Напряжение углекислого газа в плазме крови может быть изменено функцией внешнего дыхания, а количество ионов водорода или рН - буферными системами крови и HCO 3 , например путем их выведения через почки с мочой. Величина рН плазмы крови зависит от соотношения концентрации растворенного в ней углекислого газа и ионов бикарбоната. В виде бикарбоната плазмой крови, т. е. в химически связанном состоянии, переносится основное количество углекислого газа - порядка 45 мл/100 мл крови, или до 90 %. Эритроцитами в виде карбаминового соединения с белками гемоглобина транспортируется примерно 2,5 мл/100 мл крови углекислого газа, или 5 %. Транспорт углекислого газа кровью от тканей к легким в указанных формах не связан с явлением насыщения, как при транспорте кислорода, т. е. чем больше образуется углекислого газа, тем большее его количество транспортируется от тканей к легким. Однако между парциальным давлением углекислого газа в крови и количеством переносимого кровью углекислого газа имеется криволинейная зависимость: кривая диссоциации углекислого газа.

Роль эритроцитов в транспорте углекислого газа. Эффект Холдена.

В крови капилляров тканей организма напряжение углекислого газа составляет 5,3 кПа (40 мм рт. ст.), а в самих тканях - 8,0-10,7 кПа (60-80 мм рт. ст.). В результате С0 2 диффундирует из тканей в плазму крови, а из нее - в эритроциты по градиенту парциального давления С0 2 . В эритроцитах С0 2 образует с водой угольную кислоту, которая диссоциирует на Н + и HCO 3 . (С0 2 + Н 2 0 = Н 2 СО 3 = Н + + HCO 3). Эта реакция протекает быстро, поскольку С0 2 + Н 2 0 = Н 2 СО 3 катализируется ферментом карбоангидразой мембраны эритроцитов, которая содержится в них в высокой концентрации.

В эритроцитах диссоциация углекислого газа продолжается постоянно по мере образования продуктов этой реакции, поскольку молекулы гемоглобина действуют как буферное соединение, связывая положительно заряженные ионы водорода. В эритроцитах по мере освобождения кислорода из гемоглобина его молекулы будут связываться с ионами водорода (С0 2 + Н 2 0 = Н 2 С0 3 = = Н + + HCO 3), образуя соединение (Нb-Н +). В целом это называется эффектом Холдена, который приводит к сдвигу кривой диссоциации оксигемоглобина вправо по оси х, что снижает сродство гемоглобина к кислороду и способствует более интенсивному освобождению его из эритроцитов в ткани. При этом в составе соединения НЬ-Н + транспортируется примерно 200 мл С0 2 в одном литре крови от тканей к легким. Диссоциация углекислого газа в эритроцитах может быть лимитирована только буферной емкостью молекул гемоглобина. Образующиеся внутри эритроцитов в результате диссоциации С0 2 ионы НСОз с помощью специального белка-переносчика мембраны эритроцитов выводятся из эритроцитов в плазму, а на их место из плазмы крови закачиваются ионы Сl - (феномен «хлорного» сдвига). Основная роль реакции С0 2 внутри эритроцитов заключается в обмене ионами Сl - и НСОз между плазмой и внутренней средой эритроцитов. В результате этого обмена продукты диссоциации углекислого газа Н + и НСОз будут транспортироваться внутри эритроцитов в виде соединения (Нb-Н +), а плазмой крови - в виде бикарбонатов.

Эритроциты участвуют в транспорте углекислого газа от тканей к легким, поскольку С0 2 образует прямую комбинацию с - NН 2 -группами белковых субъединиц гемоглобина: С0 2 + Нb -> НbС0 2 или карбаминовое соединение. Транспорт кровью С0 2 в виде карбаминового соединения и ионов водорода гемоглобином зависит от свойств молекул последнего; обе реакции обусловлены величиной парциального давления кислорода в плазме крови на основе эффекта Холдена.

В количественном отношении транспорт углекислого газа в растворенной форме и в форме карбаминового соединения является незначительным, по сравнению с его переносом С0 2 кровью в виде бикарбонатов. Однако при газообмене С0 2 в легких между кровью и альвеолярным воздухом эти две формы приобретают основное значение.

Когда венозная кровь возвращается от тканей к легким, С0 2 диффундирует из крови в альвеолы и РС0 2 в крови снижается с 46 мм рт. ст. (венозная кровь) до 40 мм рт.ст. (артериальная кровь). При этом в величине общего количества С0 2 (6 мл/100 мл крови), диффундирующего из крови в альвеолы, доля растворенной формы С0 2 и карбаминовых соединений становится более значительной относительно бикарбонатной. Так, доля растворенной формы составляет 0,6 мл/100 мл крови, или 10 %, карбаминовых соединений - 1,8 мл/100 мл крови, или 30%, а бикарбонатов - 3,6 мл/100 мл крови, или 60 %.

В эритроцитах капилляров легких по мере насыщения молекул гемоглобина кислородом начинают освобождаться ионы водорода, диссоциировать карбаминовые соединения и НСОз вновь превращается в С0 2 (Н+ + НСОз = = Н 2 С0 3 = С0 2 +Н 2 0), который путем диффузии выводится через легкие по градиенту его парциальных давлений между венозной кровью и альвеолярным пространством. Таким образом, гемоглобин эритроцитов играет основную роль в транспорте кислорода от легких к тканям, и углекислого газа в обратном направлении, поскольку способен связываться с 0 2 и Н + .

В состоянии покоя через легкие из организма человека за минуту удаляется примерно 300 мл С0 2: 6 мл/100 мл крови х 5000 мл/мин минутного объема кровообращения.

7. Регуляция дыхания. Дыхательный центр, его отделы. Автоматия дыхательного центра.

Хорошо известно, что внешнее дыхание постоянно изменяется в различных условиях жизнедеятельности организма.

Дыхательная потребность. Деятельность функциональной системы дыхания всегда подчинена удовлетворению дыхательной потребности организма, которая в значительной степени определяется тканевым метаболизмом.

Так, при мышечной работе по сравнению с покоем возрастает потребность в кислороде и удалении двуокиси углерода. Для компенсации повышенной дыхательной потребности увеличивается интенсивность легочной вентиляции, что выражается в увеличении частоты и глубины дыхания. Роль двуокиси углерода. Эксперименты на животных показали, что избыток двуокиси углерода в воздухе и крови (гиперкапния) стимулирует легочную вентиляцию за счет учащения и углубления дыхания, создавая условия для удаления из организма ее избытка. Напротив, снижение парциального давления двуокиси углерода в крови (гипокапния) вызывает уменьшение легочной вентиляции вплоть до полной остановки дыхания (апноэ). Это явление наблюдается после произвольной или искусственной гипервентиляции, во время которой из организма в избытке удаляется двуокись углерода. В результате сразу же после интенсивной гипервентиляции возникает остановка дыхания - постгипервентиляционное апноэ.

Роль кислорода. Недостаток кислорода в атмосфере, снижение его парциального давления при дыхании на большой высоте в условиях разреженной атмосферы (гипоксия) также стимулируют дыхание, вызывая увеличение глубины и особенно частоты дыхания. В результате гипервентиляции недостаток кислорода частично компенсируется.

Избыток кислорода в атмосфере (гипероксия), наоборот, снижает объем легочной вентиляции.

Во всех случаях вентиляция изменяется в направлении, способствующем восстановлению измененного газового состояния организма. Процесс, называемый регуляцией дыхания, заключается в стабилизации дыхательных показателей у человека.

Под главным дыхательным центром понимают совокупность нейронов специфических дыхательных ядер продолговатого мозга.

Дыхательный центр управляет двумя основными функциями; двигательной, которая проявляется в виде сокращения дыхательных мышц, и гомеостатической, связанной с поддержанием постоянства внутренней среды организма при сдвигах в ней содержания 0 2 и С0 2 Двигательная, или моторная, функция дыхательного центра заключается в генерации дыхательного ритма и его паттерна. Благодаря этой функции осуществляется интеграция дыхания с другими функциями. Под паттерном дыхания следует иметь в виду длительность вдоха и выдоха, величину дыхательного объема, минутного объема дыхания. Гомеостатическая функция дыхательного центра поддерживает стабильные величины дыхательных газов в крови и внеклеточной жидкости мозга, адаптирует дыхательную функцию к условиям измененной газовой среды и другим факторам среды обитания.

Белки (протеины , полипептиды ) - самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. В состав молекул белков входят атомы углерода, кислорода, водорода, азота и иногда серы, фосфора и железа.

Мономерами белков являются аминокислоты , которые(имея в своём составе карбоксильную и амино- группы)обладают свойствами кислоты и основания (амфотерны).

Благодаря этому аминокислоты могут соединяться друг с другом (их количество в одной молекуле может достигать нескольких сотен). В связи с этим молекулы белков имеют большие размеры и их называют макромолекулами .

Структура белковой молекулы

Под структурой белковой молекулы понимают ее аминокислотный состав, последовательность мономеров и степень скрученности молекулы белка.

В молекулах белков встречается всего 20 видов различных аминокислот и огромное разнообразие белков создается за счет различного их сочетания.

  • Последовательность аминокислот в составе полипептидной цепи - это первичная структура белка (она уникальна для любого белка и определяет его форму, свойства и функции). Первичная структура белка уникальна для любого типа белка и определяет форму его молекулы, его свойства и функции.
  • Длинная молекула белка сворачивается и приобретает сначала вид спирали в результате образования водородных связей между -СО и -NН группами разных аминокислотных остатков полипептидной цепи (между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты). Эта спираль - вторичная структура белка .
  • Третичная структура белка - трёхмерная пространственная “упаковка” полипептидной цепи в виде глобулы (шарика). Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот (гидрофобными, водородными, ионными и дисульфидными S-S связями).
  • Некоторые белки (например, гемоглобин крови человека) имеют четвертичную структуру. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Четвертичная структура удерживается непрочными ионными, водородными и гидрофобными связями.

Структура белков может нарушаться (подвергаться денатурации ) при нагревании, обработке некоторыми химическими веществами, облучении и др. При слабом воздействии распадается только четвертичная структура, при более сильном - третичная, а затем - вторичная, и белок остается в виде полипептидной цепи. В результате денатурации белок теряет способность выполнять свою функцию.

Нарушение четвертичной, третичной и вторичной структур обратимо. Этот процесс называют ренатурацией .

Разрушение первичной структуры необратимо.

Кроме простых белков, состоящих только из аминокислот, есть еще и сложные белки, в состав которых могут входить углеводы (гликопротеины ), жиры (липопротеины ), нуклеиновые кислоты (нуклеопротеины ) и др.

Функции белков

  • Каталитическая (ферментативная) функция. Специальные белки - ферменты - способны ускорять биохимические реакции в клетке в десятки и сотни миллионов раз. Каждый фермент ускоряет одну и только одну реакцию. В состав ферментов входят витамины.
  • Структурная (строительная) функция - одна из основных функций белков (белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин – хрящи и сухожилия).
  • Транспортная функция - белки обеспечивают активный транспорт ионов через клеточные мембраны (транспортные белки в наружной мембране клеток), транспорт кислорода и углекислого газа (гемоглобин крови и миоглобин в мышцах), транспорт жирных кислот (белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ).
  • Сигнальная функция . Прием сигналов из внешней среды и передача информации в клетку происходит за счёт встроенных в мембрану белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды.
  • Сократительная (двигательная) функция - обеспечивается сократительными белками – актином и миозином (благодаря сократительным белкам двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов).
  • Защитная функция - антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь, образуя тромб.
  • Регуляторная функция присуща белкам - гормонам (не все гормоны являются белками!). Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах (например, инсулин регулирует содержание сахара в крови).
  • Энергетическая функция - при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры (при полном расщеплении 1 г белка до конечных продуктов выделяется 17,6 кДж энергии). Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.

— это физиологический процесс, обеспечивающий поступление в организм кислорода и удаление углекислого газа. Дыхание протекает в несколько стадий:

  • внешнее дыхание (вентиляция легких);
  • (между альвеолярным воздухом и кровью капилляров малого круга кровообращения);
  • транспорт газов кровью;
  • обмен газов в тканях (между кровью капилляров большого круга кровообращения и клетками тканей);
  • внутреннее дыхание (биологическое окисление в митохондриях клеток).

Изучает первые четыре процесса. Внутреннее дыхание рассматривается в курсе биохимии.

2.4.1. Транспорт кровью кислорода

Функциональная система транспорта кислорода — совокупность структур сердечно-сосудистого аппарата, крови и их регуляторных механизмов, образующих динамическую саморегулирующуюся организацию, деятельность всех составных элементов которой создает диффузионные ноля и градиенты pO2 между кровью и клетками тканей и обеспечивает адекватное поступление кислорода в организм.

Целью ее функционирования является минимизация разности между потребностью и потреблением кислорода. Оксидазный путь использования кислорода , сопряженный с окислением и фосфорилированием в митохондриях цепи тканевого дыхания, является наиболее емким в здоровом организме (используется около 96-98 % потребляемого кислорода). Процессы транспорта кислорода в организме обеспечивают также и его антиоксидантную защиту .

  • Гипероксия повышенное содержание кислорода в организме.
  • Гипоксия - пониженное содержание кислорода в организме.
  • Гиперкапния — повышенное содержание углекислого газа в организме.
  • Гиперкапнемия — повышенное содержание углекислого газа в крови.
  • Гипокапния — пониженное содержание углекислого газа в организме.
  • Гипокаппемия - пониженное содержание углекислого газа в крови.

Рис. 1. Схема процессов дыхания

Потребление кислорода — количество кислорода, поглощаемое организмом в течение единицы времени (в покое 200- 400 мл/мин).

Степень насыщения крови кислородом — отношение содержания кислорода в крови к ее кислородной емкости.

Объем газов, находящихся в крови, принято выражать в объемных процентах (об%). Этот показатель отражает количество газа в миллилитрах, находящееся в 100 мл крови.

Кислород транспортируется кровью в двух формах:

  • физического растворения (0,3 об%);
  • в связи с гемоглобином (15-21 об%).

Молекулу гемоглобина, не связанную с кислородом, обозначают символом Нb, а присоединившую кислород (оксигемоглобин) — НbO 2 . Присоединение кислорода к гемоглобину называют оксигенацией (сатурацией), а отдачу кислорода — де- оксигенацией или восстановлением (десатурацией). Гемоглобину принадлежит основная роль в связывании и транспорте кислорода. Одна молекула гемоглобина при полной оксигена- ции связывает четыре молекулы кислорода. Один грамм гемоглобина связывает и транспортирует 1,34 мл кислорода. Зная содержание гемоглобина в крови, легко рассчитать кислородную емкость крови.

Кислородная емкость крови — это количество кислорода, связанного с гемоглобином, находящимся в 100 мл крови, при его полном насыщении кислородом. Если в крови содержится 15 г% гемоглобина, то кислородная емкость крови составит 15 . 1,34 = 20,1 мл кислорода.

В нормальных условиях гемоглобин связывает кислород в легочных капиллярах и отдает его в тканевых благодаря особым свойствам, которые зависят от ряда факторов. Основным фактором, влияющим на связывание и отдачу гемоглобином кислорода, является величина напряжения кислорода в крови, зависящая от количества растворенного в ней кислорода. Зависимость связывания гемоглобином кислорода от его напряжения описывается кривой, получившей название кривой диссоциации оксигемоглобина (рис. 2.7). На графике но вертикали отмечен процент молекул гемоглобина, связанных с кислородом (%НbO 2), по горизонтали — напряжение кислорода (рO 2). Кривая отражает изменение %НbO 2 в зависимости от напряжения кислорода в плазме крови. Она имеет S-образный вид с перегибами в области напряжения 10 и 60 мм рт. ст. Если рО 2 в плазме становится больше, то оксигенация гемоглобина начинает нарастать почти линейно нарастанию напряжения кислорода.

Рис. 2. Кривые диссоциации: а — при одинаковой температуре (Т = 37 °С) и различном рСО 2 ,: I- оксимиоглобина нрн нормальных условиях (рСО 2 = 40 мм рт. ст.); 2 — окенгемоглобина при нормальных условиях (рСО 2 , = 40 мм рт. ст.); 3 — окенгемоглобина (рСО 2 , = 60 мм рт. ст.); б — при одинаковом рС0 2 (40 мм рт. ст.) и различной температуре

Реакция связывания гемоглобина с кислородом является обратимой, зависит от сродства гемоглобина к кислороду, которое, в свою очередь, зависит от напряжения кислорода в крови:

При обычном парциальном давлении кислорода в альвеолярном воздухе, составляющем около 100 мм рт. ст., этот газ диффундирует в кровь капилляров альвеол, создавая напряжение, близкое к парциальному давлению кислорода в альвеолах. Сродство гемоглобина к кислороду в этих условиях повышается. Из приведенного уравнения видно, что реакция сдвигается в сторону образования окенгемоглобина. Оксигенация гемоглобина в оттекающей от альвеол артериальной крови достигает 96-98%. Из-за шунтирования крови между малым и большим кругом оксигенация гемоглобина в артериях системного кровотока немного снижается, составляя 94-98%.

Сродство гемоглобина к кислороду характеризуется величиной напряжения кислорода, при котором 50% молекул гемоглобина оказываются оксигенированными. Его называют напряжением полунасыщения и обозначают символом Р 50 . Увеличение Р 50 свидетельствует о снижении сродства гемоглобина к кислороду, а его снижение — о возрастании. На уровень Р 50 влияют многие факторы: температура, кислотность среды, напряжение СО 2 , содержание в эритроците 2,3-дифосфоглицерата. Для венозной крови Р 50 близко к 27 мм рт. ст., а для артериальной — к 26 мм рт. ст.

Из крови сосудов микроциркуляторного русла кислород но его градиенту напряжения постоянно диффундирует в ткани и его напряжение в крови уменьшается. В то же время напряжение углекислого газа, кислотность, температура крови тканевых капилляров увеличиваются. Это сопровождается снижением сродства гемоглобина к кислороду и ускорением диссоциации оксигемоглобина с высвобождением свободного кислорода, который растворяется и диффундирует в ткани. Скорость высвобождения кислорода из связи с гемоглобином и его диффузии удовлетворяет потребности тканей (в том числе высокочувствительных к недостатку кислорода), при содержании НbО 2 в артериальной крови выше 94%. При снижении содержания НbО 2 менее 94% рекомендуется принимать меры к улучшению сатурации гемоглобина, а при содержании 90% ткани испытывают кислородное голодание и необходимо принимать срочные меры, улучшающие доставку в них кислорода.

Состояние, при котором оксигенация гемоглобина снижается менее 90%, а рО 2 крови становится ниже 60 мм рт. ст., называют гипоксемией.

Приведенные на рис. 2.7 показатели сродства Нb к О 2 , имеют место при обычной, нормальной температуре тела и напряжении углекислого газа в артериальной крови 40 мм рт. ст. При возрастании в крови напряжения углекислого газа или концентрации протонов Н+ сродство гемоглобина к кислороду снижается, кривая диссоциации НbО 2 , сдвигается вправо. Такое явление называют эффектом Бора. В организме повышение рСО 2 , происходит в тканевых капиллярах, что способствует увеличению деоксигснации гемоглобина и доставке кислорода в ткани. Снижение сродства гемоглобина к кислороду происходит также при накоплении в эритроцитах 2,3-дифосфоглицерата. Через синтез 2,3-дифосфоглицерата организм может влиять на скорость диссоциации НbO 2 . У пожилых людей содержание этого вещества в эритроцитах повышено, что препятствует развитию гипоксии тканей.

Повышение температуры тела снижает сродство гемоглобина к кислороду. Если температура тела снижается, то кривая диссоциации НbО 2 , сдвигается влево. Гемоглобин активнее захватывает кислород, но в меньшей мере отдает его тканям. Это является одной из причин, почему при попадании в холодную (4-12 °С) воду даже хорошие пловцы быстро испытывают непонятную мышечную слабость. Развивается переохлаждение и гипоксия мышц конечностей по причине как уменьшения в них кровотока, так и сниженной диссоциации НbО 2 .

Из анализа хода кривой диссоциации НbО 2 видно, что рО 2 в альвеолярном воздухе может быть снижено с обычного 100 мм рт. ст. до 90 мм рт. ст., а оксигенация гемоглобина будет сохраняться на совместимом с жизнедеятельностью уровне (уменьшится лишь на 1-2%). Такая особенность сродства гемоглобина к кислороду дает возможность организму приспосабливаться к снижению вентиляции легких и понижению атмосферного давления (например, жить в горах). Но в области низкого напряжения кислорода крови тканевых капилляров (10-50 мм рт. ст.) ход кривой резко меняется. На каждую единицу снижения напряжения кислорода деоксигенируется большое число молекул оксигемоглобина, увеличивается диффузия кислорода из эритроцитов в плазму крови и за счет повышения его напряжения в крови создаются условия для надежного обеспечения тканей кислородом.

На связь гемоглобина с килородом влияют и другие факторы. На практике важно учитывать то, что гемоглобин обладает очень высоким (в 240-300 раз большим, чем к кислороду) сродством к угарному газу (СО). Соединение гемоглобина с СО называют карбоксигелюглобином. При отравлении СО кожа пострадавшего в местах гиперемии может приобретать вишнево-красный цвет. Молекула СО присоединяется к атому железа гема и тем самым блокирует возможность связи гемоглобина с кислородом. Кроме того, в присутствии СО даже те молекулы гемоглобина, которые связаны с кислородом, в меньшей степени отдают его тканям. Кривая диссоциации НbО 2 сдвигается влево. При наличии в воздухе 0,1% СО более 50% молекул гемоглобина превращается в карбоксигемогло- бин, а уже при содержании в крови 20-25% НbСO человеку требуется врачебная помощь. При отравлении угарным газом важно обеспечить пострадавшему вдыхание чистого кислорода. Это увеличивает скорость диссоциации НbСO в 20 раз. В условиях обычной жизни содержание НbСOв крови составляет 0-2%, после выкуренной сигареты оно может возрасти до 5% и более.

При действии сильных окислителей кислород способен образовывать прочную химическую связь с железом гема, при которой атом железа становится трехвалентным. Такое соединение гемоглобина с кислородом называют метгемоглобином. Оно не может отдавать кислород тканям. Метгемоглобин сдвигает кривую диссоциации оксигемоглобина влево, ухудшая таким образом условия высвобождения кислорода в тканевых капиллярах. У здоровых людей в обычных условиях из-за постоянного поступления в кровь окислителей (перекисей, нитропронзводных органических веществ и т.д.) до 3% гемоглобина крови может быть в виде метгемоглобина.

Низкий уровень содержания этого соединения поддерживается благодаря функционированию антиоксидантных ферментных систем. Образование метгемоглобина ограничивают антиоксиданты (глутатион и аскорбиновая кислота), присутствующие в эритроцитах, а его восстановление в гемоглобин происходит в процессе ферментативных реакций с участием эритроцитариых ферментов дегидрогеназ. При недостаточности этих систем или при избыточном попадании в кровоток веществ (например, фенацетина, противомалярийных лекарственных препаратов и т.д.), обладающих высокими оксидантными свойствами, развивается мстгсмоглобинсмия.

Гемоглобин легко взаимодействует и со многими другими растворенными в крови веществами. В частности, при взаимодействии с лекарственными препаратами, содержащими серу, может образовываться сульфгемоглобин, сдвигающий кривую диссоциации оксигемоглобина вправо.

В крови плода преобладает фетальный гемоглобин (HbF), обладающий большим сродством к кислороду, чем гемоглобин взрослого. У новорожденного в эритроцитах содержится до 70% фстального гемоглобина. Гемоглобин F заменяется на НbА в течение первого полугодия жизни.

В первые часы после рождения рО 2 артериальной крови составляет около 50 мм рт. ст., а НbО 2 - 75-90%.

У пожилых людей напряжение кислорода в артериальной крови и насыщение гемоглобина кислородом постепенно снижается. Величину этого показателя рассчитывают по формуле

рO 2 = 103,5-0,42 . возраст в годах.

В связи с существованием тесной связи между насыщением кислородом гемоглобина крови и напряжением в ней кислорода был разработан метод пульсоксиметрии , получивший широкое применение в клинике. Этим методом определяют насыщение гемоглобина артериальной крови кислородом и его критические уровни, при которых напряжение кислорода в крови становится недостаточным для его эффективной диффузии в ткани и они начинают испытывать кислородное голодание (рис. 3).

Современный пульсоксиметр состоит из датчика, включающего светодиодный источник света, фотоприемника, микропроцессора и дисплея. Свет от светодиода направляется через ткань пальца кисти (стопы), мочки уха, поглощается оксигемоглобином. Непоглощенная часть светового потока оценивается фотоприемником. Сигнал фотоприемника обрабатывается микропроцессором и подается на экран дисплея. На экране отображается процентное насыщение гемоглобина кислородом, частота пульса и пульсовая кривая.

На кривой зависимости насыщения гемоглобина кислородом видно, что гемоглобин артериальной крови, опекающей из альвеолярных капилляров (рис. 3), полностью насыщенкислородом (SaO2 = 100%), напряжение кислорода в ней составляет 100 мм рт. ст. (рО2, = 100 мм рт. ст.). После диссоциации оксигсмоглобина в тканях кровь становится деоксигенированной и в смешанной венозной крови, возвращающейся в правое предсердие, в условиях покоя гемоглобин остается насыщенным кислородом на 75% (Sv0 2 = 75%), а напряжение кислорода составляет 40 мм рт. ст. (pvO2 = 40 мм рт. ст.). Таким образом, в условиях покоя ткани поглотили около 25% (≈250 мл) кислорода, высвободившегося из оксигсмоглобина после его диссоциации.

Рис. 3. Зависимость насыщения кислородом гемоглобина артериальной крови от напряжения в ней кислорода

При уменьшении всего лишь на 10% насыщения гемоглобина артериальной крови кислородом (SaO 2 , <90%), диссоциирующий в тканях оксигемоглобин не обеспечивает достаточного напряжения кислорода в артериальной крови для его эффективной диффузии в ткани и они начинают испытывать кислородное голодание.

Одной из важных задач, которая решается при постоянном измерении пульсоксиметром насыщения гемоглобина артериальной крови кислородом, является обнаружение момента, когда насыщение снижается до критического уровня (90%) и пациенту необходимо оказание неотложной помощи, направленной на улучшение доставки кислорода в ткани.

Транспорт кровью углекислого газа и его связь с кислотно-щелочным состоянием крови

Углекислый газ транспортируется кровью в формах:

  • физического растворения — 2,5-3 об%;
  • карбоксигемоглобина (НbСО 2) — 5 об%;
  • бикарбонатов (NaHCO 3 и КНСO 3) — около 50 об%.

В оттекающей от тканей крови содержится 56-58 об% СО 2 , а в артериальной — 50-52 об%. При протекании через тканевые капилляры кровь захватывает около 6 об% СО 2 , а в легочных капиллярах этот газ диффундирует в альвеолярный воздух и удаляется из организма. Особенно быстро идет обмен СО 2 , связанного с гемоглобином. Углекислый газ присоединяется к аминогруппам в молекуле гемоглобина, поэтому карбоксигемоглобин называют еще карбаминогемоглобином. Большая часть углекислого газа транспортируется в виде натриевых и калиевых солей угольной кислоты. Ускоренному распаду угольной кислоты в эритроцитах при прохождении их по легочным капиллярам способствует фермент карбоангидра- за. При рСО2 ниже 40 мм рт. ст. этот фермент катализирует распад Н 2 СO 3 на Н 2 0 и С0 2 , способствуя удалению углекислого газа из крови в альвеолярный воздух.

Накопление углекислого газа в крови свыше нормы называют гиперкапнией , а понижение гипокапнией. Гиперкаппия сопровождается сдвигом рН крови в кислую сторону. Это обусловлено тем, что углекислый газ, соединяясь с водой, образует угольную кислоту:

CO 2 + H 2 O = H 2 CO 3

Угольная кислота диссоциирует согласно закону действующих масс:

Н 2 СО 3 <-> Н + + HCO 3 - .

Таким образом, внешнее дыхание через влияние на содержание углекислого газа в крови принимает непосредственное участие в поддержании кислотно-щелочного состояния в организме. За сутки с выдыхаемым воздухом из организма человека удаляется около 15 ООО ммоль угольной кислоты. Почки удаляют приблизительно в 100 раз меньше кислот.

где рН — отрицательный логарифм концентрации протонов; рК 1 — отрицательный логарифм константы диссоциации (К 1) угольной кислоты. Для ионной среды, имеющейся в плазме, рК 1 =6,1.

Концентрацию [СО2] можно заменить напряжением [рС0 2 ]:

[С0 2 ] = 0,03 рС0 2 .

Тогда рН = 6,1 + lg / 0,03 рСО 2 .

Подставив эти значения, получим:

рН = 6,1 + lg24 / (0,03 . 40) = 6,1 + lg20 = 6,1 + 1,3 = 7,4.

Таким образом, пока соотношение / 0,03 рС0 2 равно 20, рН крови будет 7,4. Изменение этого соотношения происходит при ацидозе или алкалозе, причинами которых могут быть нарушения в системе дыхания.

Различают изменения кислотно-щелочного состояния, вызванные нарушениями дыхания и метаболизма.

Дыхательный алкалоз развивается при гипервентиляции легких, например при пребывании на высоте в горах. Недостаток кислорода во вдыхаемом воздухе приводит к возрастанию вентиляции легких, а гипервентиляция — к избыточному вымыванию из крови углекислого газа. Соотношение / рС0 2 сдвигается в сторону преобладания анионов и рН крови увеличивается. Увеличение рН сопровождается усилением выведения почками бикарбонатов с мочой. При этом в крови будет обнаруживаться меньшее, чем в норме, содержание анионов HCO 3 - или так называемый «дефицит оснований».

Дыхательный ацидоз развивается из-за накопления в крови и тканях углекислого газа, обусловленного недостаточностью внешнего дыхания или кровообращения. При гиперкапнии показатель соотношения / рСО 2 , снижается. Следовательно, снижается и рН (см. выше приведенные уравнения). Это подкисление может быть быстро устранено усилением вентиляции.

При дыхательном ацидозе почки увеличивают выведение с мочой протонов водорода в составе кислых солей фосфорной кислоты и аммония (Н 2 РО 4 - и NH 4 +). Наряду с усилением секреции протонов водорода в мочу увеличивается образование анионов угольной кислоты и усиление их реабсорбции в кровь. Содержание HCO 3 - в крови возрастает и рН возвращается к норме. Это состояние называют компенсированным дыхательным ацидозом. О его наличии можно судить по величине рН и нарастанию избытка оснований (разности между содержанием в исследуемой крови и в крови с нормальным кислотно-щелочным состоянием.

Метаболический ацидоз обусловлен поступлением в организм избытка кислот с пищей, нарушениями метаболизма или введением лекарственных препаратов. Увеличение концентрации водородных ионов в крови приводит к возрастанию активности центральных и периферических рецепторов, контролирующих рН крови и ликвора. Учащенная импульсация от них поступает к дыхательному центру и стимулирует вентиляцию легких. Развивается гипокапиия. которая несколько компенсирует метаболический ацидоз. Уровень в крови снижается и это называют дефицитом оснований.

Метаболический алкалоз развивается при избыточном приеме внутрь щелочных продуктов, растворов, лекарственных веществ, при потере организмом кислых продуктов обмена или избыточной задержке почками анионов . Дыхательная система реагирует на повышение соотношения /рС0 2 гиповентиляцией легких и повышением напряжения углекислого газа в крови. Развивающаяся гиперкапния может в определенной мере компенсировать алкалоз. Однако объем такой компенсации ограничен тем, что накопление углекислого газа в крови идет не более, чем до напряжения 55 мм рт. ст. Признаком компенсированного метаболического алкалоза является наличие избытка оснований.

Взаимосвязь между транспортом кислорода и углекислого газа кровью

Имеется три важнейших пути взаимосвязи транспорта кислорода и углекислого газа кровью.

Взаимосвязь по типу эффекта Бора (увеличение рСО-, снижает сродство гемоглобина к кислороду).

Взаимосвязь по типу эффекта Холдэна . Она проявляется в том, что при деоксигенации гемоглобина увеличивается его сродство к углекислому газу. Высвобождается дополнительное число аминогрупп гемоглобина, способных связывать углекислый газ. Это происходит в тканевых капиллярах и восстановленный гемоглобин может в больших количествах захватывать углекислый газ, выходящий в кровь из тканей. В соединении с гемоглобином транспортируется до 10% от всего переносимого кровью углекислого газа. В крови легочных капилляров гемоглобин оксигенируется, его сродство к углекислому газу снижается и около половины этой легко обмениваемой фракции углекислого газа отдастся в альвеолярный воздух.

Еще один путь взаимосвязи обусловлен изменением кислотных свойств гемоглобина в зависимости от его соединения с кислородом. Величины констант диссоциации этих соединений в сопоставлении с угольной кислотой имеют такое соотношение: Hb0 2 > Н 2 С0 3 > Нb. Следовательно, НbО2 обладает более сильными кислотными свойствами. Поэтому после образования в легочных капиллярах он забирает катионы (К+) от бикарбонатов (КНСО3) в обмен на ионы Н + . В результате этого образуется H 2 CO 3 При повышении концентрации угольной кислоты в эритроците фермент карбоангидраза начинает разрушать ее с образованием СО 2 и Н 2 0. Углекислый газ диффундирует в альвеолярный воздух. Таким образом, оксигенация гемоглобина в легких способствует разрушению бикарбонатов и удалению аккумулированного в них углекислого газа из крови.

Превращения, описанные выше и происходящие в крови легочных капилляров, можно записать в виде последовательных символических реакций:

Деоксигенация Нb0 2 в тканевых капиллярах превращает его в соединение с меньшими, чем у Н 2 С0 3 , кислотными свойствами. Тогда вышеприведенные реакции в эритроците текут в обратном направлении. Гемоглобин выступает поставщиком ионов К" для образования бикарбонатов и связывания углекислого газа.

Транспорт газов кровью

Переносчиком кислорода от легких к тканям и углекислого газа от тканей к легким является кровь. В свободном (растворенном) состоянии переносится лишь небольшое количество этих газов. Основное количество кислорода и углекислого газа переносится в связанном состоянии.

Транспорт кислорода

Кислород, растворяющийся в плазме крови капилляров малого круга кровообращения, диффундирует в эритроциты, сразу связывается с гемоглобином, образуя оксигемоглобин. Скорость связывания кислорода велика: время полунасыщения гемоглобина кислородом около 3 мс. Один грамм гемоглобина связывает 1,34 мл кислорода, в 100 мл крови 16 г гемоглобина и, следовательно, 19,0 мл кислорода. Эта величина называется кислородной емкостью крови (КЕК).

Превращение гемоглобина в оксигемоглобин определяется напряжением растворенного кислорода. Графически эта зависимость выражается кривой диссоциации оксигемоглобина (рис. 6.3).

На рисунке видно, что даже при небольшом парциальном давлении кислорода (40 мм рт. ст.) с ним связывается 75-80% гемоглобина.

При давлении 80-90 мм рт. ст. гемоглобин почти полностью насыщается кислородом.

Рис. 4. Кривая диссоциации оксигемоглобина

Кривая диссоциации имеет S-образную форму и состоит из двух частей — крутой и отлогой. Отлогая часть кривой, соответствующая высоким (более 60 мм рт. ст.) напряжениям кислорода, свидетельствует о том, что в этих условиях содержание оксигемоглобина лишь слабо зависит от напряжения кислорода и его парциального давления во вдыхаемом и альвеолярном воздухе. Верхняя отлогая часть кривой диссоциации отражает способность гемоглобина связывать большие количества кислорода, несмотря на умеренное снижение его парциального давления во вдыхаемом воздухе. В этих условиях ткани достаточно снабжаются кислородом (точка насыщения).

Крутая часть кривой диссоциации соответствует напряжению кислорода, обычному для тканей организма (35 мм рт. ст. и ниже). В тканях, поглощающих много кислорода (работающие мышцы, печень, почки), оке и гемоглобин диссоциирует в большей степени, иногда почти полностью. В тканях, в которых интенсивность окислительных процессов мала, большая часть оксигемоглобина не диссоциирует.

Свойство гемоглобина — легко насыщаться кислородом даже при небольших давлениях и легко его отдавать — очень важно. Благодаря легкой отдаче гемоглобином кислорода при снижении его парциального давления обеспечивается бесперебойное снабжение тканей кислородом, в которых вследствие постоянного потребления кислорода его парциальное давление равно нулю.

Распад оксигемоглобина на гемоглобин и кислород увеличивается с повышением температуры тела (рис. 5).

Рис. 5. Кривые насыщения гемоглобина кислородом при разных условиях:

А — в зависимости от реакции среды (рН); Б — от температуры; В — от содержания солей; Г — от содержания углекислого газа. По оси абцисс — парциальное давление кислорода (в мм рт. ст.). по оси ординат — степень насыщения (в %)

Диссоциация оксигемоглобина зависит от реакции среды плазмы крови. С увеличением кислотности крови возрастает диссоциация оксигемоглобина (рис. 5, А).

Связывание гемоглобина с кислородом в воде осуществляется быстро, но полного его насыщения не достигается, как и не происходит полной отдачи кислорода при снижении его парциального
давления. Более полное насыщение гемоглобина кислородом и полная его отдача при понижении напряжения кислорода происходят в растворах солей и в плазме крови (см. рис. 5, В).

Особое значение в связывании гемоглобина с кислородом имеет содержание углекислого газа в крови: чем больше его содержание в крови, тем меньше связывается гемоглобина с кислородом и тем быстрее происходит диссоциация оксигемоглобина. На рис. 5, Г показаны кривые диссоциации оксигемоглобина при разном содержании углекислого газа в крови. Особенно резко понижается способность гемоглобина соединяться с кислородом при давлении углекислого газа, равном 46 мм рт. ст., т.е. при величине, соответствующей напряжению углекислого газа в венозной крови. Влияние углекислого газа на диссоциацию оксигемоглобина очень важно для переноса газов в легких и тканях.

В тканях содержится большое количество углекислого газа и других кислых продуктов распада, образующихся в результате обмена веществ. Переходя в артериальную кровь тканевых капилляров, они способствуют более быстрому распаду оксигемоглобина и отдаче кислорода тканям.

В легких же по мере выделения углекислого газа из венозной крови в альвеолярный воздух с уменьшением содержания углекислого газа в крови увеличивается способность гемоглобина соединяться с кислородом. Тем самым обеспечивается превращение венозной крови в артериальную.

Транспорт углекислого газа

Известны три формы транспорта двуокиси углерода:

  • физически растворенный газ — 5-10%, или 2,5 мл/100 мл крови;
  • химически связанный в бикарбонатах: в плазме NaHC0 3 , в эритроцитах КНСО, — 80-90%, т.е. 51 мл/100 мл крови;
  • химически связанный в карбаминовых соединениях гемоглобина — 5-15%, или 4,5 мл/100 мл крови.

Углекислый газ непрерывно образуется в клетках и диффундирует в кровь тканевых капилляров. В эритроцитах он соединяется с водой и образует угольную кислоту. Этот процесс катализируется (ускоряется в 20 000 раз) ферментом карбоангидразой. Карбоангидраза содержится в эритроцитах, в плазме крови ее нет. Поэтому гидратация углекислого газа происходит практически только в эритроцитах. В зависимости от напряжения углекислого газа карбоангидраза катализируется с образованием угольной кислоты, так и расщеплением ее на углекислый газ и воду (в капиллярах легких).

Часть молекул углекислого газа соединяется в эритроцитах с гемоглобином, образуя карбогемоглобин.

Благодаря указанным процессам связывания напряжение углекислого газа в эритроцитах оказывается невысоким. Поэтому все новые количества углекислого газа диффундируют внутрь эритроцитов. Концентрация ионов НС0 3 - , образующихся при диссоциации солей угольной кислоты, в эритроцитах возрастает. Мембрана эритроцитов обладает высокой проницаемостью для анионов. Поэтому часть ионов НСО 3 - переходит в плазму крови. Взамен ионов НСО 3 - в эритроциты из плазмы входят ионы СI - , отрицательные заряды которых уравновешиваются ионами K+. В плазме крови увеличивается количество бикарбоната натрия (NaНСО 3 -).

Накопление ионов внутри эритроцитов сопровождается повышением в них осмотического давления. Поэтому объем эритроцитов в капиллярах большого круга кровообращения несколько увеличивается.

Для связывания большей части углекислого газа исключительно большое значение имеют свойства гемоглобина как кислоты. Оксигемоглобин имеет константу диссоциации в 70 раз большую, чем дезоксигемоглобин. Оксигемоглобин — более сильная кислота, чем угольная, а дезоксигемоглобин — более слабая. Поэтому в артериальной крови оксигемоглобин, вытеснивший ионы К + из бикарбонатов, переносится в виде соли КНbO 2 . В тканевых капиллярах КНbО 2 , отдает кислород и превращается в КНb. Из него угольная кислота как более сильная вытесняет ионы К + :

КНb0 2 + H 2 CO 3 = КНb + 0 2 + КНСО 3

Таким образом, превращение оксигемоглобина в гемоглобин сопровождается увеличением способности крови связывать углекислый газ. Это явление носит название эффекта Холдейна. Гемоглобин служит источником катионов (К+), необходимых для связывания угольной кислоты в форме бикарбонатов.

Итак, в эритроцитах тканевых капилляров образуется дополнительное количество бикарбоната калия, а также карбогемоглобин, а в плазме крови увеличивается количество бикарбоната натрия. В таком виде углекислый газ переносится к легким.

В капиллярах малого круга кровообращения напряжение углекислого газа снижается. От карбогемоглобина отщепляется СО2,. Одновременно происходит образование оксигемоглобина, увеличивается его диссоциация. Оксигемоглобин вытесняет калий из бикарбонатов. Угольная кислота в эритроцитах (в присутствии карбоангидразы) быстро разлагается на воду и углекислый газ. Ионы НСОГ входят в эритроциты, а ионы СI - входят в плазму крови, где уменьшается количество бикарбоната натрия. Углекислый газ диффундирует в альвеолярный воздух. Схематически все эти процессы представлены на рис. 6.

Рис. 6. Процессы, происходящие в эритроците при поглощении или отдаче кровью кислорода и углекислого газа