Под иммунитетом понимают совокупность процессов и механизмов, обеспечивающих организму постоянство внутренней среды от всех генетически чужеродных элементов экзогенной и эндогенной природы. Неспецифические факторы резистентности являются проявлениями врожденного иммунитета. Выделяют: механические барьеры (кожа, слизистые), гуморальные факторы (иммуноцитокины, лизоцим, бета-лизины, система пропердиновых белков, белки острой фазы) и клеточные факторы (фагоциты, естественные киллеры). В отличие от иммунитета для неспецифической резистентности характерно:

1) Отсутствие специфического ответа на определенные антитела;

2) Наличие как индуцибельных, так и неиндуцибельных факторов защиты;

3) Отсутствие способности сохранять память от первичного контакта с антигеном.

Основными клеточными клетками-эффекторами при уничтожении микробов являются фагоциты (нейтрофилы, макрофаги). Однако функции фагоцитов не ограничиваются только киллигом чужеродной частицы. Фагоцит выпоняет 3 основных группы функций :

1) Защитная (собственно фагоцитоз)

2) Представляющая - макрофаг представляет АГ лимфоцитам в системе клеточной кооперации

3) Секреторная – продуцирует более 60 активных медиаторов, среди которых ИЛ-1,8; активные формы кислорода, продукты метаболизма арахидоновой кислоты и др.

С развитием недостаточной активности какого-либо из факторов неспецифической резистентности развивается иммунодефицитное состояние, в связи, с чем необходимо иметь представление о путях оценки функциональной активности каждого из выше перечисленных компонентов.

Схема 1. Основные методы оценки различных этапов фагоцитоза .

1. Учесть результаты посевов вскрытых животных. Подсчитать общую обсемененность в разных секторах, заполнить в тетради таблицу обсемененности разных органов и тканей экспериментального животного.

2. Описать колонию (по выбору преподавателя) по стандартной схеме (см. тему ‘Бактериологический метод исследования’).

3. Приготовить мазки и окрасить их по Граму. Микоскопировать, охарактеризовать морфологическую картину.

4. Изучить в готовых препаратах картину незавершенного фагоцитоза.

5. Разобрать схему постановки опыта фагоцитоза.

6. Разобрать схему постановки опсоно-фагоцитарной реакции.

Контрольные вопросы:

1. Перечислите основные группы факторов неспецифической резистентности.

2. Охарактеризуйте анатомические барьеры неспецифической резистентности.

3. Каковы основные отличия неспецифической резистентности от иммунитета.

4. Охарактеризуйте гуморальные факторы неспецифической резистентности (лизоцим, иммуноцитокины, комплемент,бета-лизины, пропердиновая система, белки острой фазы)

5. Система комплемента: строение, функции, типы активации?

6. Какие клеточные факторы неспецифической резистентности вы знаете?

7. Охарактеризуйте стадии фагоцитоза.

8. Каковы формы фагоцитоза.

9. Каковы механизмы фагоцитоза.

10. Охарактеризуйте основные формы свободных радикалов.

11. Что такое фагоцитарный индекс и фагоцитарное число. Методы оценки.

12. Какими методами можно дополнительно оценить активность фагоцита?

13. Метод оценки внутриклеточного киллинга: клиническое значение, постановка.

14. Сущность опсонизации. Фагоцитарно-опсонический индекс.

15. НСТ-тест:постановка, клиническое значение.

16. Значение антилизоцимной, антикомплементарной, антиинтерфероновой активностей бактерий.


ТЕМА 3. РЕАКЦИИ ИММУНИТЕТА (1 ЗАНЯТИЕ)

Одной из форм иммунологической реактивности является способность организма к выработке антител в ответ на антиген. Антигеном является вещество определенной химической структуры, несущее чужеродную генетическую информацию. Антигены бывают полноценные, то есть способные вызывать синтез антител и связываться с ними, и неполноценные или гаптены. Гаптены способны только связываться с антителом, но не вызывать его синтез в организме. Бактерии и вирусы представлены сложной системой антигенов (таблицы 4,5), некоторые их них обладают токсическими и иммуносупрессивными свойствами.

Таблица 4

Антигены бактерий

Таблица 5

Антигены вирусов

Иммунологические методы исследования - диагностические методы исследования, основанные на специфическом взаимодействии антигенов и антител. Широко используются для лабораторной диагностики инфекционных болезней, определения групп крови, тканевых и опухолевых антигенов, видовой принадлежности белка, распознавания аллергии и аутоиммунных болезней, беременности, гормональных нарушений, а также в научно-исследовательской работе. Они включают серологические реакции, к которым относят обычно реакции прямого воздействия антигенов и антител сыворотки крови in vitro. В зависимости от механизма серологические реакции можно подразделить на реакции, основанные на феномене агглютинации; реакции, основанные на феномене преципитации; реакции лизиса и реакция нейтрализации.

Реакции, основанные на феномене агглютинации. Агглютинация представляет собой склеивание клеток или отдельных частичек - носителей антигена с помощью иммунной сыворотки к этому антигену. Реакция агглютинации бактерий с использованием соответствующей антибактериальной сыворотки относится к наиболее простым серологическим реакциям. Взвесь бактерий добавляют к различным разведениям испытуемой сыворотки крови и через определенное время контакта при 37° регистрируют, при каком наивысшем разведении сыворотки крови происходит агглютинация. Выделяют мелкозернистую и крупнохлопчатую реакции агглютинации. При связывании через Н-антиген бактерий образуются осадок из крупных конъюгатов аг-ат, в виде хлопьев. При контакте с О-аг появляется мелкозернистый осадок. Реакцию агглютинации бактерий используют для диагностики многих инфекционных болезней: бруцеллеза, туляремии, брюшного тифа и паратифов, кишечных инфекций, сыпного тифа.

Реакция пассивной, или непрямой, гемагглютинации (РПГА, РНГА). В ней используют эритроциты или нейтральные синтетические материалы (например, частицы латекса), на поверхности которых сорбированы антигены (бактериальные, вирусные, тканевые) или антитела. Их агглютинация происходит при добавлении соответствующих сывороток или антигенов. Эритроциты, сенсибилизированные антигенами, называют антигенным эритроцитарным диагностикумом и используют для выявления и титрования антител. Эритроциты, сенсибилизированные антителами. называют иммуноглобулиновыми эритроцитарными диагностикумами и применяют для выявления антигенов. Реакцию пассивной гемагглютинации используют для диагностики заболеваний, вызванных бактериями (брюшной тиф и паратифы, дизентерия, бруцеллез, чума, холера и др.), простейшими (малярия) и вирусами (грипп, аденовирусные инфекции, вирусный гепатит В, корь, клещевой энцефалит, крымская геморрагическая лихорадка и др.).

Реакции, основанные на феномене преципитации. Преципитация происходит в результате взаимодействия антител с растворимыми антигенами. Простейшим примером реакции преципитации является образование в пробирке непрозрачной полосы преципитации на границе наслоения антигена на антитело. Широко применяют различные разновидности реакции преципитации в полужидких гелях агара или агарозы (метод двойной иммунодиффузии по Оухтерлони, метод радиальной иммунодиффузии, иммуноэлетрофорез), которые носят одновременно качественный и количественный характер. В результате свободной диффузии в геле антигенов и антител в зоне оптимального их соотношения образуются специфические комплексы- полосы преципитации, которые выявляют визуально или при окрашивании. Особенностью метода является то, что каждая пара антиген- антитело формирует индивидуальную полосу преципитации, и реакция не зависит от наличия в исследуемой системе других антигенов и антител.

1.Поставить ориентировочную реакцию агглютинации на стекле. Для этого на предметное стекло пипеткой наносят каплю диагностической сыворотки и рядом каплю физиологического раствора. В каждую пробу с помощью бактериологической петли вносят небольшое количество бактериальной культуры и эмульгируют. Через 2-4 минуты в положительном случае в пробе с сывороткой появляются хлопья, кроме того капля становится прозрачной. В контрольной пробе капля остается равномерно мутной.

2.Поставить развернутую реакцию агглютинации. Для постановки реакции взять 6 пробирок. Первые 4 пробирки являются опытными, 5 и 6 –контрольными. Во все пробирки кроме 1 вносят 0,5мл физ.раствора. В первых 4 пробирках провести титрование исследуемой сыворотки (1:50; 1:100; 1:200; 1:400). Во все пробирки, кроме 5-й внести 0,5мл антигена. Пробирки встряхнуть и поставить в термостат (37 0 С) на 2 часа, затем оставить пробы в комнатной температуре на 18часов. Учет результатов проводят по следующей схеме:

Полная агглютинация, хорошо выраженный хлопьевидный осадок, надосадочная жидкость прозрачная

Неполная агглютинация, выраженный осадок, надосадочная жидкость слегка мутная

Частичная агглютинация, есть небольшой осадок, жидкость мутная

Частичная агглютинация, осадок слабо выражен, жидкость мутная

Агглютинации нет, осадка нет, жидкость мутная.

3.Ознакомиться с постановкой реакции преципитации при диагностике токсигенного штамма C.diphtheriae.

4. Разобрать схемы прямой и непрямой реакций Кумбса.

Контрольные вопросы

1. Иммунитет, его виды

2. Центральные и периферические органы иммунитета. Функции, строение.

3. Основные клетки, задействованные в иммунных реакциях.

4. Классификация антигенов, свойства антигенов, свойства гаптенов.

5. Антигенное строение бактериальной клетки, вируса.

6. Гуморальный иммунитет: особенности, основные клетки, задействованные в гуморальном иммунитете.

7. В-лимфоциты, строение клетки, фазы созревания и дифференцировки.

8. Т-лимфоциты: строение клетки, фазы созревания и дифференцировки.

9. Трехклеточная кооперация в иммунном ответе.

10. Классификация иммуноглобулинов.

11. Строение иммуноглобулина.

12. Неполные антитела, строение, значение.

13. Реакции иммунитета, классификация.

14. Реакция агглютинации, варианты постановки, диагностическое значение.

15. Реакция Кумбса, схема постановки, диагностическое значение.

16. Реакция преципитации, варианты постановки, диагностическое значение.

Неспецифическая резистентность осуществляется клеточными и гуморальными факторами, тесно взаимодействующими в достижении конечного эффекта - катаболизма чужеродной субстанции: макрофагами, нейтрофилами, комплементом и другими клетками и растворимыми факторами.
К гуморальным факторам неспецифической резистентности принадлежат лейкины - вещества, полученные из нейтрофилов, проявляющие бактерицидное действие в отношении ряда бактерий; эритрин - вещество, полученное из эритроцитов, бактерицидное в отношении дифтерийной палочки; лизоцим - фермент, продуцируемый моноцитами, макрофагами, лизирует бактерии; пропердин - белок, обеспечивающий бактерицидные, вируснейтрализующие свойства сыворотки крови; бетта-лизины - бактерицидные факторы сыворотки крови, выделяемые тромбоцитами.
Факторами неспецифической резистентности также являются кожа и слизистые оболочки организма - первая линия защиты, где вырабатываются вещества, оказывающие бактерицидное действие. Также подавляют рост и размножение микробов слюна, желудочный сок, пищеварительные ферменты.
В 1957 году английский вирусолог Айзекс и швейцарский вирусолог Лин-денманн, изучая явление взаимного подавления (интерференции) вирусов в куриных эмбрионах, опровергли связь процесса интерференции с конкуренцией между вирусами. Оказалось, что интерференция обусловлена формированием в клетках конкретного низкомолекулярного белкового вещества, которое удалось выделить в чистом виде. Ученые назвали этот белок интерфероном (ИФН), поскольку он подавлял репродукцию вирусов, создавая в клетках состояние резистентности к их последующему реинфицированию.
Интерферон образуется в клетках в ходе вирусной инфекции и обладает хорошо выраженной видовой специфичностью, то есть проявляет свое действие только в том организме, в клетках которого образовался.
При встрече организма с вирусной инфекцией именно продукция интерферона является наиболее быстрой ответной реакцией на заражение. Интерферон формирует защитный барьер на пути вирусов намного раньше специфических защитных реакций иммунитета, стимулируя клеточную резистентность, делает клетки непригодными для размножения вирусов.
В 1980 году Комитетом экспертов ВОЗ была принята и рекомендована новая классификация, согласно которой все интерфероны человека разделяются на три класса:
- альфа-интерферон (лейкоцитарный) - основной препарат для лечения вирусных и раковых заболеваний. Получают его в культуре лейкоцитов крови доноров, используя в качестве интерфероногенов вирусы, не представляющие опасности для людей (вирус Сендай);
- бета-интерферон - фибробластный, продуцируется фибробластами, у этого типа интерферона противоопухолевая активность превалирует над противовирусной;
- гамма-интерферон - иммунный, вырабатывается сенсибилизированными лимфоцитами Т-типа при повторной встрече с "известным" им антигеном, а также при стимуляции лейкоцитов (лимфоцитов) митогенами - ФГА и другими лек-тинами. Обладает выраженным иммуномодулирующим действием.
Все интерфероны отличаются друг от друга по набору аминокислот и антигенным свойствам, а также по выраженности тех или иных форм биологической активности. Описаны следующие свойства интерферонов: антивирусные, имму-номодулирующие, противоопухолевые; помимо этого интерфероны подавляют рост клеток, изменяют проницаемость клеточных мембран, активируют макрофаги, усиливают цитотоксичность лимфоцитов, активируют последующий синтез интерферона, а также обладают "гормоноподобной" активацией жизнедеятельности клеток.
Во всех звеньях взаимодействия компонентов иммунной системы как на уровне образования, активации и проявления их функций остается много белых пятен для того, чтобы создать рабочую схему действия иммунной системы и на этой основе прогнозировать развитие дальнейших событий в организме.

Неспецифическую резистентность макроорганизма обеспечи­вает фагоцитарная активность микро- и макрофагов.

Фагоцитоз (от греч. phago - ем, cytos - клетка) - наибо­лее древний механизм резистентности, действующий на всех эта­пах эволюции животного мира. У простейших организмов он обеспечивает одновременно функции питания (поглощение, пе­реваривание) и защиты клеток. На наиболее высоких стадиях эво­люции фагоцитоз тем самым выполняет только защитные функ­ции с помощью дифференцированной системы клеток. Фагоци­тоз - процесс активного поглощения клетками организма попада­ющих в него патогенных живых или убитых микробов и других чужеродных частиц с последующим перевариванием при помощи внутриклеточных ферментов.

Фагоцитирующие клетки подразделяют на две основные категории:

м и к р о ф а г и, или полиморфно-нуклеарные фагоциты (ПМН), и

м а к р о ф а г и, или мононуклеарные фагоциты (МН). Абсолютное большинство фагоцитирующих ПМН состав­ляют нейтрофилы. Среди макрофагов различают подвижные (циркулирующие) и неподвижные (оседлые) клетки. Подвижные макрофаги - это моноциты периферической крови, а неподвиж­ные - макрофаги печени, селезенки, лимфатических узлов, выс­тилающие стенки мелких сосудов и других органов и тканей.

Одним из основных функциональных элементов микро- и мак­рофагов являются лизосомы - гранулы диаметром 0,25...0,5 мкм, содержащие большой набор ферментов (кислая фосфатаза, В-глюкоронидаза, миелопероксидаза, коллагеназа, лизоцим и др.) и ряд других веществ (катионные белки, фагоцитин, лактоферрин), спо­собных участвовать в разрушении различных антигенов.

Процесс фагоцитоза включает следующие этапы: хемотаксис и прилипание (адгезия) частиц к поверхности фагоцитов; по­степенное погружение (захват) частиц в клетку с последующим отделением части клеточной мембраны и образованием фагосомы; слияние фагосомы с лизосомами; ферментативное пере­варивание захваченных частиц и удаление оставшихся микроб­ных элементов.

Активность фагоцитоза связана с наличием в сыворотке крови опсонинов. О п с о н и н ы - белки нормальной сыворотки кро­ви, вступающие в соединение с микробами, благодаря чему последние становятся более доступными фагоцитозу. Различают термостабильные и термолабильные опсонины. Первые в основном от­носятся к иммуноглобулину G, хотя могут способствовать фагоци­тозу и опсонины, относящиеся к иммуноглобулинам А и М. К термолабильным опсонинам (разрушаются в течение 20 мин при температуре 56°С) относятся компоненты системы комплемен­та - С1, С2, СЗ и С4.

Фагоцитоз, при котором происходит гибель фагоцитированного микроба, называют завершенным (совершенным). Фагоцитоз, когда в ряде случаев микробы, находящиеся внутри фагоцитов, не погибают, называют незавершенным.



Последующее развитие фагоцитарной теории внесло поправки в представления И. И. Мечникова о фагоцитозе как универсаль­ном и господствующем механизме защиты от всех существующих инфекций.

Контрольные вопросы и задания. 1. Что такое иммунология? 2. Дайте определе­ние иммунитета. 3. Назовите гуморальные факторы неспецифической защиты. 4. Что такое комплемент? Назовите пути активации комплемента. В чем их осо­бенность? 5. Что такое интерферон? Назовите его основные свойства. 6. Расска­жите об ингибиторах, находящихся в сыворотке крови. 7. Что понимают под тер­мином «бактерицидная активность сыворотки крови» (БАС), за счет каких компо­нентов она проявляется? 8. Что такое фагоцитоз? Назовите фагоцитирующие клетки. 9. В чем отличие завершенного от незавершенного фагоцитоза?

Факторы неспецифической резистентности организма

В неспецифической защите от микробов и антигенов важную роль, как указывалось выше, играют три барьера: механический, фи­зико-химический и иммунобиологический. Основными защитными факторами этих ба­рьеров являются кожа и слизистые оболочки, ферменты, фагоцитирующие клетки, комп­лемент, интерферон, ингибиторы сыворотки крови.

9.2.1. Кожа и слизистые оболочки

Многослойный эпителий здоровой кожи и слизистых оболочек обычно непроница­ем для микробов и макромолекул. Однако при малозаметных микроповреждениях, вос­палительных изменениях, укусах насекомых, ожогах и травмах через кожу и слизистые могут проникать микробы и макромолекулы. Вирусы и некоторые бактерии могут прони­кать в макроорганизм межклеточно, чреск-леточно и с помощью фагоцитов, перенося­щих поглощенных микробов через эпителий слизистых оболочек. Свидетельством этому является инфицирование в естественных ус­ловиях через слизистые верхних дыхательных путей, легких, желудочно-кишечного тракта и урогенитального тракта, а также возможность пероральной и ингаляционной иммунизации живыми вакцинами, когда вакцинный штамм бактерий и вирусов проникает через слизис­тые оболочки желудочно-кишечного тракта и дыхательных путей.


9.2.2. Физико-химическая защита

На чистой и неповрежденной коже обычно содержится мало микробов, так как потовые и сальные железы постоянно выделяют на ее поверхность вещества, обладающие бактери­цидным действием (уксусная, муравьиная, молочная кислоты).

Желудок также является барьером для про­никающих перорально бактерий, вирусов, ан­тигенов, так как последние инактивируются и разрушаются под влиянием кислого содер­жимого желудка (рН 1,5-2,5) и ферментов. В кишечнике инактивирующими факторами служат ферменты и бактериоцины, образуе­мые нормальной микробной флорой кишеч­ника, а также трипсин, панкреатин, липаза, амилазы и желчь.

9.2.3. Иммунобиологическая защита

9.2.3.1. Фагоцитоз

Фагоцитоз (от греч. phages - пожираю, cytos - клетка), открытый и изученный И. И. Мечниковым, является одним из ос­новных мощных факторов, обеспечивающих резистентность организма, защиту от ино­родных веществ, в том числе микробов. Это наиболее древняя форма иммунной защиты, которая появилась уже у кишечнополостных.

Механизм фагоцитоза состоит в поглоще- нии, переваривании, инактивации инород­ных для организма веществ специализиро­ванными клетками - фагоцитами.

И. И. Мечников к фагоцитирующим клет­кам отнес макрофаги и микрофаги. В на­стоящее время все фагоциты объединены в единую мононуклеарную фагоцитирующую систему. В нее включены тканевые макрофаги (альвеолярные, перитонеальные и др.), клет­ки Лангерганса и Гренстейна (эпидермоциты кожи), клетки Купфера (звездчатые ретику-лоэндотелиоциты), эпителиоидные клетки, нейтрофилы и эозинофилы крови и некото­рые другие.

Основные функции фагоцитов. Функции фа­гоцитов очень обширны: 1) удаляют из ор­ганизма отмирающие клетки и их структуры


(эритроциты, раковые клетки); 2) удаляют не-метабилизируемые неорганические вещества, попадающие во внутреннюю среду организма тем или иным путем (например, частички угля, минеральную и другую пыль, проника­ющую в дыхательные пути); 3) поглощают и инактивируют микробы (бактерии, вирусы, грибы), их останки и продукты; 4) синтези­руют разнообразные биологически активные вещества, необходимые для обеспечения ре­зистентности организма (некоторые компо­ненты комплемента, лизоцим, интерферон, интерлейкины и др.); 5) участвуют в регу­ляции иммунной системы; 6) осуществляют «ознакомление» Т-хелперов с антигенами, т. е. участвуют в кооперации иммунокомпе-тентных клеток.

Следовательно, фагоциты являются, с од­ной стороны, своеобразными «мусорщика­ми», очищающими организм от всех ино­родных частиц независимо от их природы и происхождения (неспецифическая функ­ция), а с другой стороны, участвуют в про­цессе специфического иммунитета путем представления антигена иммунокомпетент-ным клеткам (Т- лимфоцитам) и регуляции их активности.

Стадии фагоцитоза. Процесс фагоцитоза, т. е. поглощения инородного вещества клетка-ми, имеет несколько стадий: 1) приближение фагоцита к объекту поглощения (хемотаксис); 2) адсорбция поглощаемого вещества на по­верхности фагоцита; 3) поглощение вещества путем инвагинации клеточной мембраны с об­разованием в протоплазме фагосомы (вакуоли, пузырьки), содержащей поглощенное вещест­во; 4) слияние фагосомы с лизосомой клетки с образованием фаголизосомы; 5) активация лизосомальных ферментов и переваривание вещества в фаголизосоме с их помощью.

Особенности физиологии фагоцита. Для осу­ществления своих функций (рис. 9.2) фаго­циты располагают обширным набором ли-тических ферментов, а также продуцируют перекисные и NO ион-радикалы, которые могут поражать мембрану (или стенку) клетки на расстоянии или после фагоцитирования. На цитоплазматической мембране находятся


рецепторы к компонентам комплемента, Fc-фрагментам иммуноглобулинов, гистамину, а также антигены гистосовместимости I и II класса. Внутриклеточные лизосомы содержат до 100 различных ферментов, способных «пе­реварить» практически любое органическое вещество.

Фагоциты имеют развитую поверхность и очень подвижны. Они способны активно пе­ремещаться к объекту фагоцитоза по гради­енту концентрации особых биологически ак­тивных веществ - хемоаттрактантов. Такое передвижение получило название хемотаксис (от греч. chymeia - искусство сплавления


металлов и taxis - расположение, построе­ние). Это АТФ-зависимый процесс, в кото­ром участвуют сократительные белки актин и миозин. К числу хемоаттрактантов относятся, например, фрагменты компонентов компле­мента (СЗа и С5а), лимфокины ИЛ-8 и др.. продукты распада клеток и бактерий.

Адсорбция вещества на поверхности фа­гоцита осуществляется за счет слабых хи­мических взаимодействий и происходит ли­бо спонтанно, неспецифически, либо путем связывания со специфическими рецепторами (к иммуноглобулинам, компонентам компле­мента). «Захват» фагоцитом вещества вызыва­ет выработку большого количества перекис-ных радикалов («кислородный взрыв) и N0". которые вызывают необратимые, летальные повреждения как цельных клеток, так и отде­льных молекул.

Поглощение адсорбированного на фаго­ците вещества происходит путем эндоцито-за. Это энергозависимый процесс, связан­ный с преобразованием энергии химических связей молекулы АТФ в сократительную ак­тивность внутриклеточного актина и мио­зина. Окружение фагоцитируемого вещества бислойной цитоплазматической мембраной и образование изолированного внутриклеточ­ного пузырька - фагосомы напоминает «за­стегивание молнии». Внутри фагосомы про­должается атака поглощенного вещества активными радикалами. После слияния фа­госомы и лизосомы и образования в цитоп­лазме фаголизосомы происходит активация лизосомальных ферментов, которые разру­шают поглощенное вещество до элементар­ных составляющих, пригодных для дальней­шей утилизации для нужд самого фагоцита. Непереваренные остатки вещества «хоронят­ся» вместе с погибшим от старости фагоци­том. Ферментативное расщепление вещества может также происходить внеклеточно при выходе ферментов за пределы фагоцита.

Фагоциты, как правило, «переваривают» за­хваченные бактерии, грибы, вирусы, осущест­вляя таким образом завершенный фагоцитоз. Однако в ряде случаев фагоцитоз носит неза­вершенный характер: поглощенные бактерии (например, иерсинии) или вирусы (например, возбудитель ВИЧ-инфекции, натуральной ос-


пы) блокируют ферментативную активность фагоцита, не погибают, не разрушаются и да­же размножаются в фагоцитах. Такой процесс получил название незавершенный фагоцитоз.

Небольшой олигопептид может быть эндо-цитирован фагоцитом и после процессинга (т. е. ограниченного протеолиза) включен в состав молекулы антигена гистосовметимос-ти II класса. В составе сложного макромоле-кулярного комплекса олигопептид выставля­ется (экспрессируется) на поверхности клетки для «ознакомления» с ним Т-хелперов.

Фагоцитоз активируется под влиянием антител-опсонинов, адъювантами, компле­ментом, иммуноцитокинами (ИЛ-2) и дру­гими факторами. Механизм активирующего действия опсонинов основан на связывании комплекса антиген-антитело с рецепторами к Fc-фрагментам иммуноглобулинов на по­верхности фагоцитов. Аналогичным образом действует комплемент, который способствует связыванию на специфических для него ре­цепторах фагоцита (С-рецепторах) комплекса антиген-антитело. Адъюванты укрупняют мо­лекулы антигена и таким образом облегчают процесс его поглощения, так как интенсив­ность фагоцитоза зависит от величины погло­щаемой частицы.

Активность фагоцитов характеризуется фа­гоцитарными показателями и опсоно-фагоци-тарным индексом. Фагоцитарные показатели оцениваются числом бактерий, поглощенных или «переваренных» одним фагоцитом в еди­ницу времени, а опсонофагоцитарный индекс представляет отношение фагоцитарных пока­зателей, полученных с иммунной, т. е. содер­жащей опсонины, и неиммунной сывороткой. Эти показатели используются в клинической практике для определения иммунного статуса индивидуума.

9.2.3.2. Тромбоциты

Тромбоциты также играют важную роль в иммунитете. Они возникают из мегакариоци-тов, пролиферацию которых усиливает ИЛ-11. Тромбоциты имеют на своей поверхности ре­цепторы к IgG и IgE, к компонентам компле­мента (С1 и СЗ), атакже антигены гистосовмес-тимости I класса. На тромбоциты оказывают влияние образующиеся в организме иммунные


комплексы антиген + антитело (АГ+АТ), акти­вированный комплемент. В результате такого воздействия тромбоциты выделяют биологи­чески активные вещества (гистамин, лизоцим, |3-лизины, лейкоплакины, простагландины и др.), которые принимают участие в процессах иммунитета и воспаления.

9.2.3.3. Комплемент

Природа и характеристика комплемента. Комплемент является одним из важных фак­торов гуморального иммунитета, играющим роль в защите организма от антигенов. Он был открыт в 1899 г. французским имму­нологом Ж. Борде, назвавшим его «алекси­ном». Современное название комплементу дал П. Эрлих. Комплемент представляет со­бой сложный комплекс белков сыворотки крови, находящийся обычно в неактивном состоянии и активирующийся при соедине­нии антигена с антителом или при агрега­ции антигена. В состав комплемента входят 20 взаимодействующих между собой белков, девять из которых являются основными ком­понентами комплемента; их обозначают циф­рами: С1, С2, СЗ, С4... С9. Важную роль играют также факторы В, D и Р (пропердин). Белки комплемента относятся к глобулинам и отличаются между собой по ряду физико-химических свойств. В частности, они сущес­твенно различаются по молекулярной массе, а также имеют сложный субъединичный состав: C1-C1q, C1r, Cls; СЗ-СЗа, СЗb; С5-С5а, С5b и т. д. Компоненты комплемента синтези­руются в большом количестве (составляют 5-10 % от всех белков крови), часть из них образуют фагоциты.

Функции комплемента многообразны: а) участвует в лизисе микробных и других клеток (цитотоксическое действие); б) обладает хемо-таксической активностью; в) принимает учас­тие в анафилаксии; г) участвует в фагоцитозе. Следовательно, комплемент является компонен­том многих иммунолитических реакций, направ­ленных на освобождение организма от микробов и других чужеродных клеток и антигенов (на­пример, опухолевых клеток, трансплантата).

Механизм активации комплемента очень сложен и представляет собой каскад фер­ментативных протеолитических реакций, в


результате которого образуется активный ци-толитический комплекс, разрушающий стен­ку бактерии и других клеток. Известны три пути активации комплемента: классический, альтернативный и лектиновый (рис. 9.3). По классическому пути комплемент активирует­ся комплексом антиген-антитело. Для этого достаточно участия в связывании антигена одной молекулы IgM или двух молекул IgG. Процесс начинается с присоединения к ком­плексу АГ+АТ компонента С1, который рас­падается на субъединицы Clq, Clr и Cls. Далее в реакции участвуют последовательно активированные «ранние» компоненты ком-


племента в такой последовательности: С4, С2, СЗ. Эта реакция имеет характер усиливающе­гося каскада, т. е. когда одна молекула пре­дыдущего компонента активирует несколько молекул последующего. «Ранний» компонент комплемента СЗ активирует компонент С5, который обладает свойством прикрепляться к мембране клетки. На компоненте С5 путем последовательного присоединения «поздних» компонентов С6, С7, С8, С9 образуется лити-ческий или мембраноатакующий комплекс, который нарушает целостность мембраны (образует в ней отверстие), и клетка погибает в результате осмотического лизиса.


Альтернативный путь активации комплемен­та проходит без участия антител. Этот путь характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция при аль­тернативном пути начинается с взаимодействия антигена (например, полисахарида) с протеи­нами В, D и пропердином (Р) с последующей активацией компонента СЗ. Далее реакция идет так же, как и при классическом пути - образу­ется мембраноатакующий комплекс.

Пектиновый путь активации комплемента также происходит без участия антител. Он ини­циируется особым маннозосвязывающим белком сыворотки крови, который после взаимодейс­твия с остатками маннозы на поверхности мик­робных клеток катализирует С4. Дальнейший каскад реакций сходен с классическим путем.

В процессе активации комплемента обра­зуются продукты протеолиза его компонен­тов - субъединицы СЗа и СЗЬ, С5а и С5Ь и дру­гие, которые обладают высокой биологической активностью. Например, СЗа и С5а принимают участие в анафилактических реакциях, являют­ся хемоаттрактантами, СЗЬ - играет роль в оп-сонизации объектов фагоцитоза, и т. д. Сложная каскадная реакция комплемента происходит с участием ионов Са 2+ и Mg 2+ .

9.2.3.4. Лизоцим

Особая и немаловажная роль в естествен­ной резистентности принадлежит лизоциму, открытому в 1909 г. П. Л. Лащенко и выделен­ному и изученному в 1922 г. А. Флемингом.

Лизоцим - это протеолитический фермент мурамидаза (от лат. mums - стенка) с моле­кулярной массой 14-16 кДа, синтезируемый макрофагами, нейтрофилами и другими фаго­цитирующими клетками и постоянно поступа­ющий в жидкости и ткани организма. Фермент содержится в крови, лимфе, слезах, молоке, сперме, урогенитальном тракте, на слизистых оболочках дыхательных путей, ЖКТ, в мозге. Отсутствует лизоцим лишь только в спинно­мозговой жидкости и передней камере гла­за. В сутки синтезируется несколько десятков граммов фермента. Механизм действия лизо-цима сводится к разрушению гликопротеидов (мурамилдипептида) клеточной стенки бакте­рий, что ведет к их лизису и способствует фаго­цитозу поврежденных клеток. Следовательно,


лизоцим обладает бактерицидным и бактери-остатическим действием. Кроме того, он акти­вирует фагоцитоз и образование антител.

Нарушение синтеза лизоцима ведет к сни­жению резистентности организма, возник­новению воспалительных и инфекционных заболеваний; в таких случаях используют для лечения препарат лизоцима, получаемый из яичного белка или путем биосинтеза, так как он продуцируется некоторыми бактериями (например, Bacillus subtilis), растениям семейс­тва крестоцветных (редис, репа, хрен, капуста и т. д.). Химическая структура лизоцима извес­тна, и он синтезирован химическим способом.

9.2.3.5. Интерферон

Интерферон относится к важным защитным белкам иммунной системы. Открыт в 1957 г. А. Айзексом и Ж. Линдеманом при изучении интерференции вирусов (лат. inter - меж­ду и ferens - несущий), т. е. явления, когда животные или культуры клеток, инфициро­ванные одним вирусом, становились нечувс­твительными к заражению другим вирусом. Оказалось, что интерференция обусловлена образующимся при этом белком, обладаю­щим защитным противовирусным свойством. Этот белок назвали интерфероном. В насто­ящее время интерферон достаточно хорошо изучен, известны его структура и свойства, и он широко используется в медицине как ле­чебное и профилактическое средство.

Интерферон представляет собой семейство белков-гликопротеидов с молекулярной мас­сой от 15 до 70 кДа, которые синтезируются клетками иммунной системы и соединитель­ной ткани. В зависимости от того, какими клетками синтезируется интерферон, выделя­ют три типа: а, beta и gama-интерфероны.

Альфа-интерферон вырабатывается лейко­цитами и он получил название лейкоцитар­ного; бета- интерферон называют фиброблас-тным, поскольку он синтезируется фиброб-ластами - клетками соединительной ткани, а гамма-интерферон - иммунным, так как он вырабатывается активированными Т-лимфо-цитами, макрофагами, естественными килле­рами, т. е. иммунными клетками.


Интерферон синтезируется в организме постоянно, и его концентрация в крови де­ржится на уровне примерно 2 МЕ/мл (1 меж­дународная единица - ME - это количество интерферона, защищающее культуру клеток от 1 ЦПД 50 вируса). Выработка интерферона резко возрастает при инфицировании виру­сами, а также при воздействии индукторов интерферона, например РНК, ДНК, сложных полимеров. Такие индукторы интерферона получили название интерфероногенов.

Помимо противовирусного действия интер­ферон обладает противоопухолевой защитой, так как задерживает пролиферацию (размноже­ние) опухолевых клеток, а также иммуномоду-лирующей активностью, стимулируя фагоцитоз, естественные киллеры, регулируя антителооб-разование В-клетками, активируя экспрессию главного комплекса гистосовместимости.

Механизм действия интерферона сложен. Интерферон непосредственно на вирус вне клетки не действует, а связывается со спе­циальными рецепторами клеток и оказыва­ет влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков.

Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или пос­тупать в организм извне. Поэтому его использу­ют с профилактической целью при многих ви­русных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепати­ты (В, С, D), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и забо­леваний, связанных с иммунодефицитами.

Интерфероны обладают видоспецифичнос-тью, т. е. интерферон человека менее эффек­тивен для животных и наоборот. Однако эта видоспецифичность относительна. Получают интерферон двумя способами: а) путем инфи­цирования лейкоцитов или лимфоцитов кро­ви человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конс­труируют из него препараты интерферона; б) генно-инженерным способом - путем выра­щивания в производственных условиях ре-комбинантных штаммов бактерий, способных продуцировать интерферон. Обычно исполь-


зуют рекомбинантные штаммы псевдомонад, кишечной палочки со встроенными в их ДНК генами интерферона. Интерферон, получен­ный генно-инженерным способом, носит на­звание рекомбинантного. В нашей стране ре-комбинантный интерферон получил офици­альное название «Реаферон». Производство этого препарата во многом эффективнее и дешевле, чем лейкоцитарного.

Рекомбинантный интерферон нашел ши­рокое применение в медицине как профилак­тическое и лечебное средство при вирусных инфекциях, новообразованиях и при имму-нодефицитах.

9.2.3.6. Защитные белки сыворотки крови

К защитным белкам сыворотки крови отно­сится ряд протеинов, принимающих участие в защите организма от микробов и других анти­генов: белки острой фазы, опсонины, пропер-дин, бета-лизин, фибронектин и др.

К белкам острой фазы относятся С-реактив-ный белок, противовоспалительные и другие белки, которые вырабатываются в печени в ответ на повреждение тканей и клеток. С-реактивный белок способствует опсонизации бактерий и является индикатором воспаления.

Маннозосвязывающий белок - нормальный протеин сыворотки крови. Способен прочно связываться с остатками маннозы, находя­щимися на поверхности микробных клеток, и опсонизировать их. Способствует фагоцитозу, активирует систему комплемента по лектино-вому пути.

Пропердин - представляет собой гамма-глобулин нормальной сыворотки крови. Способствует активации комплемента по аль­тернативному пути и таким образом участвует во многих иммунологических реакциях,

Фибронектин - универсальный белок плаз­мы и тканевых жидкостей, синтезируемый макрофагами. Обеспечивает опсонизацию ан­тигенов и связывание клеток с чужеродными веществами, например фагоцитов с антигенами и микробами, экранирует дефекты эндотелия сосудов, препятствуя тромбообразованию.

Бета-лизины - белки сыворотки крови, синтезируемые тромбоцитами. Оказывают повреждающее действие на цитоплазматичес-кую мембрану бактерий.

Гуморальные факторы неспецифической защиты организма включают в себя нормальные (естественные) антитела, лизоцим, пропердин, бета-лизины (лизины), комплемент, интерферон, ин­гибиторы вирусов в сыворотке крови и ряд других веществ, посто­янно присутствующих в организме.

Антитела (естественные). В крови животных и человека, которые ранее никогда не болели и не подвергались иммуниза­ции, обнаруживают вещества, вступающие в реакцию со многими антигенами, но в низких титрах, не превышающих разведения 1:10 ... 1:40. Эти вещества были названы нормальными или при­родными антителами. Считают, что они возникают в результате естественной иммунизации различными микроорганизмами.

Л и з о ц и м. Лизосомальный фермент присутствует в слезах, слюне, носовой слизи, секрете слизистых оболочек, сыворотке крови и экстрактах органов и тканей, в молоке; много лизоцима в белке куриных яиц. Лизоцим устойчив к нагреванию (инактивируется при кипячении), обладает свойством лизировать живые и убитые в основном грамположительные микроорганизмы.

Метод определения лизоцима основан на способности сыво­ротки действовать на культуру микрококкус лизодектикус, выра­щенную на косом агаре. Взвесь суточной культуры готовят по оп­тическому стандарту (10 ЕД) на физиологическом растворе. Ис­следуемую сыворотку последовательно разводят физиологическим раствором в 10, 20, 40, 80 раз и т. д. Во все пробирки добавляют равный объем взвеси микробов. Пробирки встряхивают и ставят в термостат на 3 ч при 37 °С. Учет реакции производят по степени просветления сыворотки. Титр лизоцима - это последнее разве­дение, в котором происходит полный лизис микробной взвеси.

С е к р е т о р н ы й и м м у н о г л о б у л и н А. Постоянно присутствует в содержимом секретов слизистых оболочек, молоч­ных и слюнных желез, в кишечном тракте; обладает выраженны­ми противомикробными и противовирусными свойствами.

П р о п е р д и н (от лат. pro и perdere - подготовить к разруше­нию). Описан в 1954 г. в виде полимера как фактор неспецифичес­кой защиты и цитолизина. Присутствует в нормальной сыворотке крови в количестве до 25 мкг/мл. Это сывороточный белок (бета-глобулин) с молекулярной массой

220 000. Пропердин принимает участие в разрушении микробной клетки, нейтрализации вирусов. Пропердин действует в составе пропердиновой системы: пропер­дин комплемент и двухвалентные ионы магния. Нативный пропер­дин, играет значительную роль в неспецифической активации комплемента (альтернативный путь активации).

Л и з и н ы. Белки сыворотки крови, обладающие способнос­тью лизировать (растворять) некоторые бактерии и эритроциты. В сыворотке крови многих животных присутствуют бета-лизины, вызывающие лизис культуры сенной палочки, а также многих патогенных микробов.



Л а к т о ф е р р и н. Негеминовый гликопротеид, обладающий железосвязывающей активностью. Связывает два атома трехвалент­ного железа, конкурируя с микробами, в результате чего рост мик­робов подавляется. Синтезируется полиморфноядерными лейко­цитами и гроздевидными клетками железистого эпителия. Яв­ляется специфическим компонентом секрета желез - слюнных, слезных, молочных, дыхательного, пищеварительного и моче­полового, трактов. Лактоферрин - фактор местного иммунитета, защищающий от микробов эпителиальные покровы.

К о м п л е м е н т. Многокомпонентная система белков сыво­ротки крови и других жидкостей организма, которые играют важ­ную роль в поддержании иммунного гомеостаза. Впервые его опи­сал Бухнер в 1889 г. под названием «алексин» - термолабильный фактор, в присутствии которого происходит лизис микробов. Тер­мин «комплемент» ввел Эрлих в 1895 г. Комплемент весьма не ус­тойчив. Было замечено, что специфические антитела в присутствии свежей сыворотки крови способны вызывать гемолиз эритроцитов или лизис бактериальной клетки, но если сыворотку перед поста­новкой реакции прогревать при 56 "С в течение 30 мин, то лизис не произойдет. Оказалось, что гемолиз (лизис) происходит за счет наличия комплемента в свежей сыворотке. Наибольшее количе­ство комплемента содержится в сыворотке морской свинки.

Система комплемента состоит не менее чем из девяти различ­ных белков сыворотки крови, обозначаемых от С1 до С9. С1 в свою очередь имеет три субъединицы - Clq, Clr, Cls. Активиро­ванная форма комплемента обозначается черточкой сверху (с).

Существует два пути активации (самосборки) системы компле­мента - классический и альтернативный, отличающиеся пуско­выми механизмами.

При к л а с с и ч е с к о м пути активации происходит связы­вание компонента комплемента С1 с иммунными комплексами (антиген + антитело), куда включаются последовательно субком­поненты (Clq, Clr, Cls), С4, С2 и СЗ. Комплекс С4, С2 и СЗ обес­печивает фиксацию на клеточной мембране активированного С5 компонента комплемента, а затем включаются через ряд реакций С6 и С7, которые способствуют фиксации С8 и С9. В результате происходит повреждение клеточной стенки или лизис бактериаль­ной клетки.

При а л ь т е р н а т и в н о м пути активации комплемента активаторами служат непосредственно сами вирусы, бактерии или экзотоксины. В альтернативном пути активации не участвуют компоненты С1, С4 и С2. Активация начинается со стадии СЗ, куда включается группа белков: Р (пропердин), В (проактиватор), конвертаза проактиватора СЗ и ингибиторы j и Н. Пропердин в реакции стабилизирует конвертазы СЗ и С5, поэтому этот путь ак­тивации называют также системой пропердина. Реакция начина­ется с присоединения фактора В к СЗ, в результате ряда последо­вательных реакций в комплекс (конвертаза СЗ) встраивается Р (пропердин), который воздействует как фермент на СЗ и С5,"и на­чинается каскад активации комплемента с С6, С7, С8 и С9, что приводит к повреждению клеточной стенки или лизису клетки.

Таким образом, система комплемента служит эффективным механизмом защиты организма, которая активируется в результате иммунных реакций или при непосредственном контакте с микро­бами или токсинами. Отметим некоторые биологические функ­ции активированных компонентов комплемента: участвуют в ре­гуляции процесса переключения иммунологических реакций с клеточных на гуморальные и наоборот; С4, связанный с клеткой, способствует иммунному прикреплению; СЗ и С4 усиливают фа­гоцитоз; С1 и С4, связываясь с поверхностью вируса, блокируют рецепторы, ответственные за внедрение вируса в клетку; СЗа и С5а идентичны анафилактоксинам, они воздействуют на нейтрофильные гранулоциты, последние выделяют лизосомные ферменты, разрушающие чужеродные антигены, обеспечивают направлен­ную миграцию макрофагов, вызывают сокращение гладких мышц, усиливают воспаление.

Установлено, что макрофаги синтезируют С1, С2, СЗ, С4 и С5; гепатоциты - СЗ, Со, С8; клетки паренхимы печени - СЗ, С5 и С9.

И н т е р ф е р о н. Выделен в 1957г. английскими вирусоло­гами А. Айзексом и И. Линдерманом. Интерферон первоначально рассматривался как фактор противовирусной защиты. В даль­нейшем выяснилось, что это группа белковых веществ, функция которых заключается в обеспечении генетического гомеостаза клетки. В качестве индукторов образования интерферона, поми­мо вирусов, выступают бактерии, бактериальные токсины, мито-гены и др. В зависимости от клеточного происхождения интер­ферона и индуцирующих его синтез факторов различают а-ин-терферон, или лейкоцитарный, который продуцируют лейкоциты, обработанные вирусами и другими агентами; (3-интерферон, или фибробластный, который продуцируют фибробласты, обработан­ные вирусами или другими агентами. Оба эти интерферона отне­сены к типу I. Иммунный интерферон, или у-интерферон, проду­цируют лимфоциты и макрофаги, активированные невирусными индукторами.

Интерферон принимает участие в регуляции различных меха­низмов иммунного ответа: усиливает цитотоксическое действие сенсибилизированных лимфоцитов и К-клеток, оказывает анти-пролиферативное и противоопухолевое действие и др. Интерфе­рон обладает видотканевой специфичностью, т. е. более активен в той биологической системе, в которой выработан, защищает клет­ки от вирусной инфекции лишь в том случае, если воздействует на них до контакта с вирусом.

Процесс взаимодействия интерферона с чувствительными клет­ками включает в себя несколько этапов: адсорбция интерферона на клеточных рецепторах; индукция антивирусного состояния; разви­тие вирусной резистентности (наполнение интерферониндуцированных РНК и белков); выраженная резистентность к вирусному инфицированию. Следовательно, интерферон не вступает в прямое взаимодействие с вирусом, а препятствует проникновению вируса и ингибирует синтез вирусных белков на клеточных рибосомах в пе­риод репликации вирусных нуклеиновых кислот. У интерферона также установлены радиационно-защитные свойства.

И н г и б и т о р ы. Неспецифические противовирусные ве­щества белковой природы, присутствуют в нормальной нативной сыворотке крови, секретах эпителия слизистых оболочек дыха­тельного и пищеварительного трактов, в экстрактах органов и тка­ней. Обладают способностью подавлять активность вирусов в кро­ви и жидкостях вне чувствительной клетки. Ингибиторы подраз­деляют на термолабильные (теряют свою активность при прогревании вании сыворотки крови до 6О...62°С в течение 1 ч) и термоста­бильные (выдерживают нагревание до 100 °С). Ингибиторы обла­дают универсальной вируснейтрализующей и антигемагглютинирующей активностью в отношении многих вирусов.

Ингибиторы тканей, секретов и экскретов животных оказались активными в отношении многих вирусов: например, секреторные ингибиторы респираторного тракта обладают антигемагглютинирующей и вируснейтрализующей активностью.

Бактерицидная активность сыворотки крови (БАС). Свежая сы­воротка крови человека и животных обладает выраженными бактериостатическими свойствами в отношении ряда возбудителей инфекционных болезней. Основные компоненты, подавляющие рост и развитие микроорганизмов, - это нормальные антитела, лизоцим, пропердин, комплемент, монокины, лейкины и другие вещества. Поэтому БАС является интегрированным выражением противомикробных свойств гуморальных факторов неспецифи­ческой защиты. БАС зависит от состояния здоровья животных, условий их содержания и кормления: при плохом содержании и кормлении активность сыворотки значительно снижается.

Определение БАС основано на способности сыворотки крови подавлять рост микроорганизмов, что зависит от уровня нормаль­ных антител, пропердина, комплемента и др. Реакцию ставят при температуре 37 °С с различными разведениями сыворотки, в кото­рые вносят определенную дозу микробов. Разведение сыворотки позволяет установить не только ее способность подавлять рост микробов, но и силу бактерицидного действия, что выражается в единицах.

Защитно-адаптационные механизмы . К неспецифическим фак­торам защиты также принадлежит стресс. Факторы, вызывающие стресс, были названы Г. Силье стрессорами. По Силье стресс - особое неспецифическое состояние организма, возникающее в от­вет на действие различных повреждающих факторов окружающей среды (стрессоров). Кроме патогенных микроорганизмов и их токсинов в качестве стрессоров могут выступать холод, голод, теп­ло, ионизирующее излучение и другие агенты, обладающие спо­собностью вызывать ответные реакции организма. Адаптационный синдром может быть общим и местным. Он обусловливается действием гипофизарно-адренокортикальной системы, связанной с гипоталамическим центром. Под влиянием стрессора щпофиз начинает усиленно выделять андренокортикотропный гормон (АКТГ), стимулирующий функции надпочечников, вызывая у них усиленное выделение противовоспалительного гормона типа кор­тизона, снижающего защитно-воспалительную реакцию. Если действие стрессора слишком сильно или продолжительно, то в процессе адаптации возникает болезнь.

При интенсификации животноводства количество стрессовых факторов, воздействию которых подвергаются животные, значи тельно возрастает. Поэтому профилактика стрессовых воздей­ствий, снижающих естественную резистентность организма и обусловливающих заболевания, является одной из важнейших за­дач ветеринарной службы.